login
A344850
a(n) is the denominator of Catalan-Daehee number d(n).
1
1, 1, 3, 3, 15, 5, 105, 105, 63, 315, 3465, 495, 6435, 9009, 15015, 15015, 255255, 23205, 37791, 188955, 101745, 1119195, 25741485, 572033, 42902475, 79676025, 42181425, 42181425, 155687805, 40970475, 1270084725, 1270084725, 665282475, 173996955, 6089893425, 794333925
OFFSET
0,3
LINKS
Dae San Kim and Taekyun Kim, A new approach to Catalan numbers using differential equations, Russ. J. Math. Phys. 24, 465-475 (2017).
Taekyun Kim and Dae San Kim, Some identities of Catalan-Daehee polynomials arising from umbral calculus, Appl. Comput. Math. 16 (2017), no. 2, 177-189.
Yuankui Ma, Taekyun Kim, Dae San Kim and Hyunseok Lee, Study on q-analogues of Catalan-Daehee numbers and polynomials, arXiv:2105.12013 [math.NT], 2021.
FORMULA
G.f. of d(n): log(1 - 4*x)/(2*(sqrt(1 - 4*x) - 1)).
a(n) = denominator(d(n)), where d(n) = 4^n/(n + 1) - Sum_{m=0..n-1} 4^(n-m-1)*C(m)/(n - m) with d(0) = 1 and C(m) the m-th Catalan number.
MATHEMATICA
nmax:=36; a[n_]:=Denominator[Coefficient[Series[Log[1-4x]/(2(Sqrt[1-4x]-1)), {x, 0, nmax}], x, n]]; Array[a, nmax, 0] (* or *)
a[n_]:=Denominator[If[n==0, 1, 4^n/(n+1)-Sum[4^(n-m-1)CatalanNumber[m]/(n-m), {m, 0, n-1}]]]; Array[a, 36, 0]
CROSSREFS
Cf. A000108, A000302, A014973 (denominators of Daehee numbers), A343206, A344849 (numerators).
Sequence in context: A179857 A260078 A163590 * A114320 A185138 A285947
KEYWORD
nonn,frac
AUTHOR
Stefano Spezia, May 30 2021
STATUS
approved