OFFSET
1,1
COMMENTS
Conjecture: a(n) exists for any n > 0. In general, if m and n > 0 are integers with gcd(6,m) = 1, then the set {prime(k*n)+m: k = 1,2,3,...} contains two distinct elements x and y with x+y and x-y also in the set.
REFERENCES
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..200
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
EXAMPLE
a(2) = 3 since prime(3*2)-1+(prime(2*2)-1) = 12+6 = 18 = prime(4*2)-1, and prime(3*2)-1-(prime(2*2)-1) = 12-6 = 6 = prime(2*2)-1.
a(3) = 15 since prime(15*3)-1+(prime(12*3)-1) = 196+150 = 346 = prime(23*3)-1, and prime(15*3)-1-(prime(12*3)-1) = 196 -150 = 46 = prime(5*3)-1.
a(200) = 3319 since prime(3319*200)-1+(prime(2821*200)-1) = 9987120+8389110 = 18376230 = prime(5869*200)-1, and prime(3319*200)-1-(prime(2821*200)-1) = 9987120-8389110 = 1598010 = prime(605*200)-1.
MATHEMATICA
f[n_]:=Prime[n]-1
PQ[n_, p_]:=PrimeQ[p]&&Mod[PrimePi[p], n]==0
Do[k=0; Label[bb]; k=k+1; Do[If[PQ[n, f[k*n]+f[j*n]+1]&&PQ[n, f[k*n]-f[j*n]+1], Goto[aa]], {j, 1, k-1}]; Goto[bb];
Label[aa]; Print[n, " ", k]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jul 15 2015
STATUS
approved