login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least positive integer k such that prime(k*n)-1+(prime(h*n)-1) = prime(i*n)-1 and prime(k*n)-1-(prime(h*n)-1) = prime(j*n)-1 for some positive integers h,i,j.
4

%I #7 Jul 15 2015 08:23:04

%S 3,3,15,5,25,29,32,20,41,87,17,61,18,100,58,10,82,82,45,74,166,20,28,

%T 338,18,35,159,290,64,29,353,311,75,41,42,492,107,155,77,364,100,330,

%U 145,474,502,332,227,553,238,92,121,597,338,339,452,164,239,832,221,243

%N Least positive integer k such that prime(k*n)-1+(prime(h*n)-1) = prime(i*n)-1 and prime(k*n)-1-(prime(h*n)-1) = prime(j*n)-1 for some positive integers h,i,j.

%C Conjecture: a(n) exists for any n > 0. In general, if m and n > 0 are integers with gcd(6,m) = 1, then the set {prime(k*n)+m: k = 1,2,3,...} contains two distinct elements x and y with x+y and x-y also in the set.

%D Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

%H Zhi-Wei Sun, <a href="/A260078/b260078.txt">Table of n, a(n) for n = 1..200</a>

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641 [math.NT], 2014.

%e a(2) = 3 since prime(3*2)-1+(prime(2*2)-1) = 12+6 = 18 = prime(4*2)-1, and prime(3*2)-1-(prime(2*2)-1) = 12-6 = 6 = prime(2*2)-1.

%e a(3) = 15 since prime(15*3)-1+(prime(12*3)-1) = 196+150 = 346 = prime(23*3)-1, and prime(15*3)-1-(prime(12*3)-1) = 196 -150 = 46 = prime(5*3)-1.

%e a(200) = 3319 since prime(3319*200)-1+(prime(2821*200)-1) = 9987120+8389110 = 18376230 = prime(5869*200)-1, and prime(3319*200)-1-(prime(2821*200)-1) = 9987120-8389110 = 1598010 = prime(605*200)-1.

%t f[n_]:=Prime[n]-1

%t PQ[n_,p_]:=PrimeQ[p]&&Mod[PrimePi[p],n]==0

%t Do[k=0;Label[bb];k=k+1;Do[If[PQ[n,f[k*n]+f[j*n]+1]&&PQ[n,f[k*n]-f[j*n]+1],Goto[aa]],{j,1,k-1}];Goto[bb];

%t Label[aa];Print[n," ",k];Continue,{n,1,60}]

%Y Cf. A000040, A257926, A257938.

%K nonn

%O 1,1

%A _Zhi-Wei Sun_, Jul 15 2015