OFFSET
0,5
COMMENTS
Row n has 1+floor(n/2) terms. Row sums yield the factorials (A000142). Sum(k*T(n,k),k>0)=n!/2 for n>=2. - Emeric Deutsch, Feb 17 2006
LINKS
Alois P. Heinz, Rows n = 0..200, flattened
FORMULA
E.g.f.: exp((y-1)*x^2/2)/(1-x). More generally, e.g.f. for number of permutations of n elements with k m-cycles is exp((y-1)*x^m/m)/(1-x).
T(n,k) = n!/(2^k*k!) * Sum_{j=0..floor(n/2)-k} (-1/2)^j/j!. - Alois P. Heinz, Nov 30 2011
EXAMPLE
T(3,1) = 3 because we have (1)(23), (12)(3) and (13)(2).
Triangle begins:
1;
1;
1, 1;
3, 3;
15, 6, 3;
75, 30, 15;
435, 225, 45, 15;
...
MAPLE
G:= exp((y-1)*x^2/2)/(1-x): Gser:= simplify(series(G, x=0, 15)): P[0]:=1: for n from 1 to 12 do P[n]:= n!*coeff(Gser, x^n) od: for n from 0 to 12 do seq(coeff(y*P[n], y^j), j=1..1+floor(n/2)) od; # yields sequence in triangular form - Emeric Deutsch, Feb 17 2006
MATHEMATICA
d = Exp[-x^2/2!]/(1 - x); f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Transpose[Table[Range[0, 10]!CoefficientList[Series[x^(2 k)/(2^k k!) d, {x, 0, 10}], x], {k, 0, 5}]]]] (* Geoffrey Critzer, Nov 29 2011 *)
CROSSREFS
KEYWORD
easy,nonn,tabf
AUTHOR
Vladeta Jovovic, Feb 05 2006
EXTENSIONS
More terms from Emeric Deutsch, Feb 17 2006
STATUS
approved