login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105114 Triangle read by rows: T(n,k) is the number of compositions of n having exactly k parts equal to 2. 6
1, 1, 1, 1, 2, 2, 4, 3, 1, 7, 6, 3, 12, 13, 6, 1, 21, 26, 13, 4, 37, 50, 30, 10, 1, 65, 96, 66, 24, 5, 114, 184, 139, 59, 15, 1, 200, 350, 288, 140, 40, 6, 351, 661, 591, 318, 105, 21, 1, 616, 1242, 1199, 704, 266, 62, 7, 1081, 2324, 2406, 1533, 645, 174, 28, 1, 1897, 4332 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row n has 1+floor(n/2) terms. Row sums are the powers of 2 (A000079). Column 0 yields A005251.

Number of binary words of length n-1 having k isolated 0's. Example: T(5,1)=6 because we have 0111, 0100, 1011, 1101, 0010 and 1110. - Emeric Deutsch, May 21 2006

LINKS

Alois P. Heinz, Rows n = 0..200, flattened

FORMULA

G.f.: (1-z)/(1-2z+z^2-z^3-tz^2+tz^3).

EXAMPLE

T(7,3) = 4 because we have (1,2,2,2), (2,1,2,2), (2,2,1,2) and (2,2,2,1).

Triangle begins:

1;

1;

1,      1;

2,      2;

4,      3,    1;

7,      6,    3;

12,    13,    6,   1;

21,    26,   13,   4;

37,    50,   30,  10,   1;

65,    96,   66,  24,   5;

114,  184,  139,  59,  15,  1;

200,  350,  288, 140,  40,  6;

351,  661,  591, 318, 105, 21,  1;

616, 1242, 1199, 704, 266, 62,  7;

MAPLE

G:=(1-z)/(1-2*z-z^2*t+z^3*t+z^2-z^3):Gser:=simplify(series(G, z=0, 18)): P[0]:=1: for n from 1 to 16 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 16 do seq(coeff(t*P[n], t^k), k=1..1+floor(n/2)) od; # yields sequence in triangular form

MATHEMATICA

nn=15; f[list_]:=Select[list, #>0&]; Map[f, CoefficientList[Series[1/(1-(x/(1-x)-x^2+y x^2)), {x, 0, nn}], {x, y}]]//Grid  (* Geoffrey Critzer, Nov 05 2012 *)

CROSSREFS

Cf. A000079, A005251.

Sequence in context: A084896 A011388 A349474 * A166284 A098086 A332887

Adjacent sequences:  A105111 A105112 A105113 * A105115 A105116 A105117

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Apr 07 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 08:36 EST 2021. Contains 349480 sequences. (Running on oeis4.)