This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105114 Triangle read by rows: T(n,k) is the number of compositions of n having exactly k parts equal to 2. 6
 1, 1, 1, 1, 2, 2, 4, 3, 1, 7, 6, 3, 12, 13, 6, 1, 21, 26, 13, 4, 37, 50, 30, 10, 1, 65, 96, 66, 24, 5, 114, 184, 139, 59, 15, 1, 200, 350, 288, 140, 40, 6, 351, 661, 591, 318, 105, 21, 1, 616, 1242, 1199, 704, 266, 62, 7, 1081, 2324, 2406, 1533, 645, 174, 28, 1, 1897, 4332 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row n has 1+floor(n/2) terms. Row sums are the powers of 2 (A000079). Column 0 yields A005251. Number of binary words of length n-1 having k isolated 0's. Example: T(5,1)=6 because we have 0111, 0100, 1011, 1101, 0010 and 1110. - Emeric Deutsch, May 21 2006 LINKS Alois P. Heinz, Rows n = 0..200, flattened FORMULA G.f.: (1-z)/(1-2z+z^2-z^3-tz^2+tz^3). EXAMPLE T(7,3) = 4 because we have (1,2,2,2), (2,1,2,2), (2,2,1,2) and (2,2,2,1). Triangle begins: 1; 1; 1,      1; 2,      2; 4,      3,    1; 7,      6,    3; 12,    13,    6,   1; 21,    26,   13,   4; 37,    50,   30,  10,   1; 65,    96,   66,  24,   5; 114,  184,  139,  59,  15,  1; 200,  350,  288, 140,  40,  6; 351,  661,  591, 318, 105, 21,  1; 616, 1242, 1199, 704, 266, 62,  7; MAPLE G:=(1-z)/(1-2*z-z^2*t+z^3*t+z^2-z^3):Gser:=simplify(series(G, z=0, 18)): P[0]:=1: for n from 1 to 16 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 16 do seq(coeff(t*P[n], t^k), k=1..1+floor(n/2)) od; # yields sequence in triangular form MATHEMATICA nn=15; f[list_]:=Select[list, #>0&]; Map[f, CoefficientList[Series[1/(1-(x/(1-x)-x^2+y x^2)), {x, 0, nn}], {x, y}]]//Grid  (* Geoffrey Critzer, Nov 05 2012 *) CROSSREFS Cf. A000079, A005251. Sequence in context: A252040 A084896 A011388 * A166284 A098086 A306323 Adjacent sequences:  A105111 A105112 A105113 * A105115 A105116 A105117 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Apr 07 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 17:32 EST 2019. Contains 329979 sequences. (Running on oeis4.)