

A105113


Triangle read by rows, based on the morphism f: 1>2, 2>3, 3>{3,5,5,5,4}, 4>5, 5>6, 6>{6,2,2,2,1}. First row is 1. If current row is a,b,c,..., then the next row is a,b,c,...,f(a),f(b),f(c),...


0



1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 3, 5, 5, 5, 4, 1, 2, 2, 3, 2, 3, 3, 3, 5, 5, 5, 4, 2, 3, 3, 3, 5, 5, 5, 4, 3, 3, 5, 5, 5, 4, 3, 5, 5, 5, 4, 3, 5, 5, 5, 4, 6, 6, 6, 5, 1, 2, 2, 3, 2, 3, 3, 3, 5, 5, 5, 4, 2, 3, 3, 3, 5, 5, 5, 4, 3, 3, 5, 5, 5, 4, 3, 5, 5, 5, 4, 3, 5, 5, 5, 4, 6, 6, 6, 5, 2, 3, 3, 3, 5, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

This substitution with the polynomial that goes with it gives a new tile, not predicted in the Kenyon paper.
q=3 version of biKenyon 6symbol substitution.


LINKS

Table of n, a(n) for n=0..104.
Richard Kenyon, The Construction of SelfSimilar Tilings


MATHEMATICA

s[n_] := n /. {1 > 2, 2 > 3, 3 > {3, 5, 5, 5, 4}, 4 > 5, 5 > 6, 6 > {6, 2, 2, 2, 1}}; t[a_] := Join[a, Flatten[s /@ a]] p[0] = {1}; p[1] = t[{1}]; Flatten[ NestList[t, {1}, 5]]


CROSSREFS

Cf. A103684, A105112, A105111.
Sequence in context: A104231 A105111 A105112 * A207328 A105056 A105061
Adjacent sequences: A105110 A105111 A105112 * A105114 A105115 A105116


KEYWORD

nonn,tabf


AUTHOR

Roger L. Bagula, Apr 07 2005


STATUS

approved



