login
Table read by antidiagonals: A(n,1) = 2n-1, and for k > 1, A(n,k) = A372289(A(n,k-1)+A(n,1)).
0

%I #27 May 31 2024 13:55:08

%S 1,5,3,13,13,5,29,341,21,7,61,2773,53,29,9,125,22229,117,149,37,11,

%T 253,177877,245,629,93,45,13,509,1423061,501,2549,205,469,53,15,1021,

%U 11384533,1013,10229,429,15701,133,61,17,2045,91076309,2037,40949,877,503125,293,309,69,19

%N Table read by antidiagonals: A(n,1) = 2n-1, and for k > 1, A(n,k) = A372289(A(n,k-1)+A(n,1)).

%C Conjecture: if A(n,1) is congruent to 33 (mod 100), then all terms on the n-th row are congruent to 33 (mod 100).

%e A(3,1) = 5. A(3,2) = A372289(5+5) = 21. A(3,3) = A372289(21+5) = 53. A(3,4) = A372289(53+5) = 117.

%e Table begins:

%e 1, 5, 13, 29, 61, 125, 253, 509, ...

%e 3, 13, 341, 2773, 22229, 177877, 1423061, 11384533, ...

%e 5, 21, 53, 117, 245, 501, 1013, 2037, ...

%e 7, 29, 149, 629, 2549, 10229, 40949, 163829, ...

%e 9, 37, 93, 205, 429, 877, 1773, 3565, ...

%e 11, 45, 469, 15701, 503125, 16100693, 515222869, 16487132501, ...

%e 13, 53, 133, 293, 613, 1253, 2533, 5093, ...

%e 15, 61, 309, 1301, 5269, 21141, 84629, 338581, ...

%e 17, 69, 173, 381, 797, 1629, 3293, 6621, ...

%e 19, 77, 3413, 27477, 219989, 1760085, 14080853, 112646997, ...

%Y Cf. A086893, A372289.

%K nonn,tabl

%O 1,2

%A _Ali Sada_, Apr 26 2024