login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109629
Sequence of Mahler coefficients of the Gray code function.
2
0, 1, 1, -4, 12, -28, 52, -80, 112, -176, 376, -976, 2536, -6112, 13504, -27456, 51552, -89344, 142240, -206656, 274800, -354240, 546976, -1283648, 3918800, -12104064, 34744256, -92031104, 227231104, -528840704, 1170706304, -2481880320, 5062828736, -9967712256
OFFSET
0,4
REFERENCES
F. Clarke, The Gray code function, in: p-adic methods and their applications, A.J. Baker and R. J. Plymen editors, Oxford University Press, New York 1992, 1-7.
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^{n-k} * C(n,k) * g(k), where g is the Gray code function A003188.
MAPLE
g:= proc(n) option remember; `if`(n<2, n,
(b-> b+g(2*b-1-n))(2^ilog2(n)))
end:
a:= n-> add((-1)^(n-k)*binomial(n, k)*g(k), k=0..n):
seq(a(n), n=0..40); # Alois P. Heinz, Oct 09 2008
MATHEMATICA
g[n_] := BitXor[n, Quotient[n, 2]];
a[n_] := Sum[(-1)^(n-k) Binomial[n, k] g[k], {k, 0, n}];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 18 2020 *)
CROSSREFS
Sequence in context: A278211 A342235 A192736 * A112087 A166019 A184633
KEYWORD
sign
AUTHOR
Jan-Christoph Schlage-Puchta (jcp(AT)math.uni-freiburg.de), Aug 02 2005
EXTENSIONS
More terms from Alois P. Heinz, Oct 09 2008
STATUS
approved