Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 May 02 2024 17:30:05
%S 0,1,1,-4,12,-28,52,-80,112,-176,376,-976,2536,-6112,13504,-27456,
%T 51552,-89344,142240,-206656,274800,-354240,546976,-1283648,3918800,
%U -12104064,34744256,-92031104,227231104,-528840704,1170706304,-2481880320,5062828736,-9967712256
%N Sequence of Mahler coefficients of the Gray code function.
%D F. Clarke, The Gray code function, in: p-adic methods and their applications, A.J. Baker and R. J. Plymen editors, Oxford University Press, New York 1992, 1-7.
%H Alois P. Heinz, <a href="/A109629/b109629.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = Sum_{k=0..n} (-1)^{n-k} * C(n,k) * g(k), where g is the Gray code function A003188.
%p g:= proc(n) option remember; `if`(n<2, n,
%p (b-> b+g(2*b-1-n))(2^ilog2(n)))
%p end:
%p a:= n-> add((-1)^(n-k)*binomial(n, k)*g(k), k=0..n):
%p seq(a(n), n=0..40); # _Alois P. Heinz_, Oct 09 2008
%t g[n_] := BitXor[n, Quotient[n, 2]];
%t a[n_] := Sum[(-1)^(n-k) Binomial[n, k] g[k], {k, 0, n}];
%t a /@ Range[0, 40] (* _Jean-François Alcover_, Nov 18 2020 *)
%Y Cf. A003188, A372304.
%K sign
%O 0,4
%A Jan-Christoph Schlage-Puchta (jcp(AT)math.uni-freiburg.de), Aug 02 2005
%E More terms from _Alois P. Heinz_, Oct 09 2008