login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 + x - 2*x^2)/(1 - 2*x)^2.
6

%I #64 Oct 01 2022 06:09:33

%S 1,5,14,36,88,208,480,1088,2432,5376,11776,25600,55296,118784,253952,

%T 540672,1146880,2424832,5111808,10747904,22544384,47185920,98566144,

%U 205520896,427819008,889192448,1845493760,3825205248,7918845952

%N Expansion of (1 + x - 2*x^2)/(1 - 2*x)^2.

%C Equals binomial transform of A042948 starting with "1": (1, 4, 5, 8, 9, 12, 13, ...) = terms > 0, == 0 or 1 mod 4. - _Gary W. Adamson_, Feb 07 2009

%H Vincenzo Librandi, <a href="/A052951/b052951.txt">Table of n, a(n) for n = 0..1000</a>

%H O. Aichholzer, A. Asinowski, and T. Miltzow, <a href="http://arxiv.org/abs/1403.5546">Disjoint compatibility graph of non-crossing matchings of points in convex position</a>, arXiv preprint arXiv:1403.5546 [math.CO], 2014.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1021">Encyclopedia of Combinatorial Structures 1021</a>.

%H Agustín Moreno Cañadas, Hernán Giraldo, Gabriel Bravo Rios, <a href="http://dx.doi.org/10.17654/MS101081631">On the Number of Sections in the Auslander-Reiten Quiver of Algebras of Dynkin Type</a>, Far East Journal of Mathematical Sciences (FJMS), Vol. 101, No. 8 (2017), pp. 1631-1654.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4).

%F G.f.: (1+x-2*x^2)/(1-2*x)^2.

%F a(n) = 4*(a(n-1) - a(n-2)).

%F a(n) = (n+1)*2^n + 2^(n-1), n > 0.

%F a(n) = A118413(n+1,n-1) for n > 2. - _Reinhard Zumkeller_, Apr 27 2006

%F E.g.f.: (1/2)*(-1 + exp(2*x)*(3 + 4*x)). - _Stefano Spezia_, Oct 22 2019

%F From _Amiram Eldar_, Oct 01 2022: (Start)

%F Sum_{n>=0} 1/a(n) = 4*sqrt(2)*arcsinh(1) - 11/3.

%F Sum_{n>=0} (-1)^n/a(n) = 13/3 - 4*sqrt(2)*arccot(sqrt(2)). (End)

%p spec:= [S,{S=Prod(Union(Sequence(Union(Z,Z)),Z),Sequence(Union(Z,Z)))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);

%p seq(`if`(n=0, 1, 2^(n-1)*(2*n+3)), n=0..40); # _G. C. Greubel_, Oct 21 2019

%t CoefficientList[Series[(1+x-2*x^2)/(1-2*x)^2,{x,0,40}],x] (* _Vincenzo Librandi_, Jun 22 2012 *)

%t LinearRecurrence[{4,-4}, {1,5,14}, 40] (* _G. C. Greubel_, Oct 21 2019 *)

%o (Magma) I:=[1, 5, 14]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // _Vincenzo Librandi_, Jun 22 2012

%o (PARI) x='x+O('x^40); Vec((1+x-2*x^2)/(1-2*x)^2) \\ _Altug Alkan_, Mar 03 2018

%o (Sage) [1]+[2^(n-1)*(2*n+3) for n in (1..40)] # _G. C. Greubel_, Oct 21 2019

%o (GAP) Concatenation([1], List([1..40], n-> 2^(n-1)*(2*n+3) )); # _G. C. Greubel_, Oct 21 2019

%Y Cf. A042948, A118413.

%K easy,nonn

%O 0,2

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000