login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187198
McKay-Thompson series of class 12H for the Monster group with a(0) = 5.
2
1, 5, 14, 36, 85, 180, 360, 684, 1246, 2196, 3754, 6264, 10226, 16380, 25804, 40032, 61275, 92628, 138452, 204804, 300040, 435672, 627356, 896400, 1271525, 1791324, 2507426, 3488472, 4825531, 6638688, 9085888, 12373992, 16772908, 22633812
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (b(q^2) * c(q^2))^3 / (b(q)^2 * c(q) * b(q^4) * c(q^4)^2) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (1/q) * chi(q) * chi(q^3) * chi(-q^6)^4 / chi(-q)^4 in powers of q where chi() is a Ramanujan theta function.
Expansion of (eta(q^2) * eta(q^6))^6 / (eta(q)^5 * eta(q^3) * eta(q^4) * eta(q^12)^5) in powers of q.
Euler transform of period 12 sequence [ 5, -1, 6, 0, 5, -6, 5, 0, 6, -1, 5, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = f(t) where q = exp(2 Pi i t).
a(n) = A058486(n) = A187091(n) unless n=0.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
EXAMPLE
1/q + 5 + 14*q + 36*q^2 + 85*q^3 + 180*q^4 + 360*q^5 + 684*q^6 + 1246*q^7 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q^2]*QP[q^6])^6/(QP[q]^5*QP[q^3]*QP[q^4]* QP[q^12]^5) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 16 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^6 / (eta(x + A)^5 * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)^5), n))}
CROSSREFS
Sequence in context: A261055 A320853 A193557 * A097507 A052951 A048745
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 06 2011
STATUS
approved