OFFSET
-1,3
LINKS
G. A. Edgar, Table of n, a(n) for n = -1..1002
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Given g.f. A(x), then B(x) = A(x)+4 satisfies 0 = f(B(x), B(x^2)) where f(u, v) = -u*v*(1 + u^2*v^2) + 7*u*v*(u + v)*(1 + u*v) + 9*u*v*(u^2 + v^2). - Michael Somos, May 16 2004
Expansion of (eta(q^3) * eta(q^4) / (eta(q) * eta(q^12)))^4 - 4 in powers of q. - Michael Somos, May 16 2004
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 11 2016
EXAMPLE
T12H = 1/q + 14*q + 36*q^2 + 85*q^3 + 180*q^4 + 360*q^5 + 684*q^6 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q^3]*(QP[q^4]/(QP[q]*QP[q^12])))^4 - 4*q + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 13 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^4 + A) / (eta(x + A) * eta(x^12 + A)))^4 - 4*x, n))}; /* Michael Somos, May 16 2004 */
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^6 + A)^6 / (eta(x + A)^5 * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)^5) - 5*x, n))}; /* Michael Somos, May 16 2004 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved