login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193557
Expansion of (1/q) * chi(-q) * chi(-q^3) * chi(-q^6)^4 / chi(q)^4 in powers of q where chi() is a Ramanujan theta function.
1
1, -5, 14, -36, 85, -180, 360, -684, 1246, -2196, 3754, -6264, 10226, -16380, 25804, -40032, 61275, -92628, 138452, -204804, 300040, -435672, 627356, -896400, 1271525, -1791324, 2507426, -3488472, 4825531, -6638688, 9085888, -12373992
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of - (b(q^2) * c(q^2))^3 / (b(-q)^2 * c(-q) * b(q^4) * c(q^4)^2) in powers of q where b(), c() are cubic AGM functions.
Expansion of eta(q)^5 * eta(q^3) * eta(q^4)^4 * eta(q^6)^3 / (eta(q^2)^9 * eta(q^12)^4) in powers of q.
Euler transform of period 12 sequence [ -5, 4, -6, 0, -5, 0, -5, 0, -6, 4, -5, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1+u)^2 * v^4 - u^4 * v^2 * (1+v) - 4*u^2 * (1+u) * (1+v) *(4+v) * (4+3*v).
a(n) = -(-1)^n * A187198(n). a(n) = A193522(n) unless n=0. a(2*n) = -4 * A128643(n) unless n=0.
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
EXAMPLE
1/q - 5 + 14*q - 36*q^2 + 85*q^3 - 180*q^4 + 360*q^5 - 684*q^6 + 1246*q^7 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_] := SeriesCoefficient[eta[q]^5* eta[q^3]*eta[q^4]^4*eta[q^6]^3/(eta[q^2]^9*eta[q^12]^4), {q, 0, n}]; Table[a[n], {n, -1, 50}] (* G. C. Greubel, Apr 03 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A)^5 * eta(x^3 + A) * eta(x^4 + A)^4 * eta(x^6 + A)^3 / (eta(x^2 + A)^9 * eta(x^12 + A)^4), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 30 2011
STATUS
approved