login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073063
G.f. satisfies: A(x) = exp( Sum_{n>=1} L(n)*A(x^n)*x^n/n ) where L(n) = n-th Lucas number.
1
1, 1, 3, 7, 19, 48, 134, 362, 1026, 2915, 8463, 24760, 73439, 219444, 661592, 2007631, 6131180, 18823235, 58072904, 179931279, 559676932, 1746983911, 5470554480, 17180641614, 54101612326, 170784939844, 540351318828, 1713234349627, 5442599443734, 17321540546788
OFFSET
0,3
FORMULA
G.f.: A(x) = Product_{n>0} 1/(1-x^n-x^(2*n))^a(n-1).
G.f.: A(x) = exp( Sum(n>=1} x^n/n * Sum_{k=0..n} C(n,k)*x^k*A(x^(n+k)) ). [From Paul D. Hanna, Nov 03 2011]
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 48*x^5 + 134*x^6 +...
where
log(A(x)) = A(x)*x + 3*A(x^2)*x^2/2 + 4*A(x^3)*x^3/3 + 7*A(x^4)*x^4/4 + 11*A(x^5)*x^5/5 +...
Equivalently,
log(A(x)) = (A(x)+x*A(x^2))*x + (A(x^2)+2*x*A(x^3)+x^2*A(x^4))*x^2/2 + (A(x^3)+3*x*A(x^4)+3*x^2*A(x^5)+x^3*A(x^6))*x^3/3 + (A(x^4)+4*x*A(x^5)+6*x^2*A(x^6)+4*x^3*A(x^7)+x^4*A(x^8))*x^4/4 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m, k)*x^k*subst(A, x, x^(m+k)+x*O(x^n)))))); polcoeff(A, n)}
CROSSREFS
Cf. A199102, A000081, A000204 (Lucas numbers).
Sequence in context: A146810 A246493 A293733 * A370169 A007288 A191824
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 17 2002
STATUS
approved