OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: Product_{j>=1} 1/(1-x^j)^A001006(j).
a(n) ~ c * 3^n / n^(3/2), where c = 11.84175157992103588081767200532703865225243959779980786519467770732598276486... - Vaclav Kotesovec, May 30 2019
MAPLE
g:= proc(n) option remember; `if`(n<2, 1,
g(n-1)+add(g(k)*g(n-k-2), k=0..n-2))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(g(d)
*d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35);
MATHEMATICA
g[n_] := g[n] = If[n<2, 1, g[n-1] + Sum[g[k]*g[n-k-2], {k, 0, n-2}]];
a[n_] := a[n] = If[n==0, 1, Sum[Sum[g[d]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 30 2019, after Alois P. Heinz *)
PROG
(Python)
from sympy.core.cache import cacheit
from sympy import divisors
@cacheit
def g(n): return 1 if n<2 else g(n - 1) + sum([g(k)*g(n - k - 2) for k in range(n - 1)])
@cacheit
def a(n): return 1 if n==0 else sum([sum([g(d)*d for d in divisors(j)])*a(n - j) for j in range(1, n + 1)])//n
print(map(a, range(36))) # Indranil Ghosh, Oct 15 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 15 2017
STATUS
approved