OFFSET
0,9
LINKS
Alois P. Heinz, Antidiagonals n = 0..80, flattened
FORMULA
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 3, 3, 3, 3, 3, ...
0, 3, 6, 7, 7, 7, 7, 7, ...
0, 5, 15, 19, 20, 20, 20, 20, ...
0, 7, 31, 48, 53, 54, 54, 54, ...
0, 11, 73, 131, 157, 163, 164, 164, ...
0, 15, 155, 348, 455, 492, 499, 500, ...
MAPLE
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(l[k]
<j, 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
A:= proc(n, k) option remember; `if`(n=0, 1, add(add(g(d, k, [])
*d, d=numtheory[divisors](j))*A(n-j, k), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
h[l_] := Function [n, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[ l[[k]] < j, 0, 1], {k, i+1, n}], {j, 1, l[[i]]}], {i, n}]][Length[l]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Table[1, n]]], g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]]];
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[g[d, k, {}]*d, {d, Divisors[j] }]*A[n - j, k], {j, 1, n}]/n];
Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 30 2017
STATUS
approved