login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293108 Number A(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; square array A(n,k), n>=0, k>=0, read by antidiagonals. 13
1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 3, 0, 1, 1, 3, 6, 5, 0, 1, 1, 3, 7, 15, 7, 0, 1, 1, 3, 7, 19, 31, 11, 0, 1, 1, 3, 7, 20, 48, 73, 15, 0, 1, 1, 3, 7, 20, 53, 131, 155, 22, 0, 1, 1, 3, 7, 20, 54, 157, 348, 351, 30, 0, 1, 1, 3, 7, 20, 54, 163, 455, 954, 755, 42, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Alois P. Heinz, Antidiagonals n = 0..80, flattened

FORMULA

G.f. of column k: Product_{j>=1} 1/(1-x^j)^A182172(j,k).

A(n,k) = Sum_{j=0..k} A293109(n,j).

A(n,n) = A(n,k) for all k >= n.

EXAMPLE

Square array A(n,k) begins:

  1,  1,   1,   1,   1,   1,   1,   1, ...

  0,  1,   1,   1,   1,   1,   1,   1, ...

  0,  2,   3,   3,   3,   3,   3,   3, ...

  0,  3,   6,   7,   7,   7,   7,   7, ...

  0,  5,  15,  19,  20,  20,  20,  20, ...

  0,  7,  31,  48,  53,  54,  54,  54, ...

  0, 11,  73, 131, 157, 163, 164, 164, ...

  0, 15, 155, 348, 455, 492, 499, 500, ...

MAPLE

h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(l[k]

    <j, 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):

g:= proc(n, i, l) option remember;

      `if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),

        g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))

    end:

A:= proc(n, k) option remember; `if`(n=0, 1, add(add(g(d, k, [])

      *d, d=numtheory[divisors](j))*A(n-j, k), j=1..n)/n)

    end:

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

h[l_] := Function [n, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[ l[[k]] < j, 0, 1], {k, i+1, n}], {j, 1, l[[i]]}], {i, n}]][Length[l]];

g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Table[1, n]]], g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]]];

A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[g[d, k, {}]*d, {d, Divisors[j] }]*A[n - j, k], {j, 1, n}]/n];

Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-Fran├žois Alcover, Jun 03 2018, from Maple *)

CROSSREFS

Columns k=0-10 give: A000007, A000041, A293732, A293733, A293734, A293735, A293736, A293737, A293738, A293739, A293740.

Main diagonal gives A293110.

Cf. A182172, A293109, A293112.

Sequence in context: A219782 A035788 A097559 * A172237 A246181 A123226

Adjacent sequences:  A293105 A293106 A293107 * A293109 A293110 A293111

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Sep 30 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 19:10 EDT 2019. Contains 323444 sequences. (Running on oeis4.)