login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293732
Number of multisets of nonempty words with a total of n letters over binary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
5
1, 1, 3, 6, 15, 31, 73, 155, 351, 755, 1673, 3604, 7897, 16988, 36902, 79222, 171030, 366180, 786746, 1679976, 3595207, 7657631, 16332935, 34706319, 73812099, 156503351, 332004423, 702533059, 1486998780, 3140716766, 6634315264, 13988517803, 29494816751
OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..3260 (terms 0..1000 from Alois P. Heinz)
FORMULA
G.f.: Product_{j>=1} 1/(1-x^j)^A001405(j).
a(n) ~ 2^(n - 1/6) * exp(3*(n/2)^(1/3) - 2 + S) / (sqrt(3*Pi) * n^(5/6)), where S = Sum_{k>=2} (sqrt(1/(1 - 1/2^(2*k - 2))) - 1) * (2^k + 2) / (2*k) = 0.3158684977247920135402311766405977266170498097655... - Vaclav Kotesovec, May 30 2019
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(add(binomial(d,
floor(d/2))*d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35);
MATHEMATICA
nmax = 40; A001405 = Table[Binomial[n, Floor[n/2]], {n, 1, nmax}]; CoefficientList[Series[Product[1/(1 - x^k)^A001405[[k]], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 30 2019 *)
CROSSREFS
Column k=2 of A293108.
Cf. A001405.
Sequence in context: A244706 A097941 A317792 * A117161 A319765 A244707
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 15 2017
STATUS
approved