login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293735
Number of multisets of nonempty words with a total of n letters over quinary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
5
1, 1, 3, 7, 20, 54, 163, 492, 1571, 5122, 17262, 59483, 209958, 755615, 2770994, 10330036, 39103166, 150073289, 583329574, 2293822828, 9116935874, 36593731182, 148221246775, 605427601519, 2492286544749, 10334197803358, 43140208034891, 181224681022614
OFFSET
0,3
COMMENTS
This sequence differs from A293110 first at n=6.
LINKS
FORMULA
G.f.: Product_{j>=1} 1/(1-x^j)^A049401(j).
a(n) ~ c * 5^n / n^5, where c = 542.824729617782144... - Vaclav Kotesovec, May 30 2019
MAPLE
g:= proc(n) option remember;
`if`(n<3, [1, 1, 2][n+1], ((3*n^2+17*n+15)*g(n-1)
+(n-1)*(13*n+9)*g(n-2) -15*(n-1)*(n-2)*g(n-3)) /
((n+4)*(n+6)))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(g(d)
*d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35);
MATHEMATICA
g[n_] := g[n] = If[n < 3, {1, 1, 2}[[n+1]], ((3n^2+17n+15) g[n-1] + (n-1)(13n+9) g[n-2] - 15(n-1)(n-2) g[n-3]) / ((n+4)(n+6))];
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[g[d] d, {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
a /@ Range[0, 35] (* Jean-François Alcover, Dec 19 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A293108.
Sequence in context: A109220 A293734 A018034 * A293736 A293737 A293738
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 15 2017
STATUS
approved