Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 19 2020 02:29:28
%S 1,1,3,7,20,54,163,492,1571,5122,17262,59483,209958,755615,2770994,
%T 10330036,39103166,150073289,583329574,2293822828,9116935874,
%U 36593731182,148221246775,605427601519,2492286544749,10334197803358,43140208034891,181224681022614
%N Number of multisets of nonempty words with a total of n letters over quinary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
%C This sequence differs from A293110 first at n=6.
%H Alois P. Heinz, <a href="/A293735/b293735.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: Product_{j>=1} 1/(1-x^j)^A049401(j).
%F a(n) ~ c * 5^n / n^5, where c = 542.824729617782144... - _Vaclav Kotesovec_, May 30 2019
%p g:= proc(n) option remember;
%p `if`(n<3, [1, 1, 2][n+1], ((3*n^2+17*n+15)*g(n-1)
%p +(n-1)*(13*n+9)*g(n-2) -15*(n-1)*(n-2)*g(n-3)) /
%p ((n+4)*(n+6)))
%p end:
%p a:= proc(n) option remember; `if`(n=0, 1, add(add(g(d)
%p *d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..35);
%t g[n_] := g[n] = If[n < 3, {1, 1, 2}[[n+1]], ((3n^2+17n+15) g[n-1] + (n-1)(13n+9) g[n-2] - 15(n-1)(n-2) g[n-3]) / ((n+4)(n+6))];
%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[g[d] d, {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
%t a /@ Range[0, 35] (* _Jean-François Alcover_, Dec 19 2020, after _Alois P. Heinz_ *)
%Y Column k=5 of A293108.
%Y Cf. A049401, A293110, A293744.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Oct 15 2017