login
A293737
Number of multisets of nonempty words with a total of n letters over septenary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
5
1, 1, 3, 7, 20, 54, 164, 500, 1629, 5462, 19164, 69457, 261154, 1012164, 4045640, 16611121, 70001515, 301922104, 1331128134, 5986321599, 27426419974, 127801386949, 605016657100, 2906093083727, 14149469612919, 69762426194708, 348016146152252, 1755188873640756
OFFSET
0,3
COMMENTS
This sequence differs from A293110 first at n=8.
LINKS
FORMULA
G.f.: Product_{j>=1} 1/(1-x^j)^A007578(j).
a(n) ~ c * 7^n / n^(21/2), where c = 233774941.39802934196800791705821024006230754487492494942398064537776753785... - Vaclav Kotesovec, May 30 2019
MAPLE
g:= proc(n) option remember; `if`(n<4, [1, 1, 2, 4][n+1],
((4*n^3+78*n^2+424*n+495)*g(n-1) +(n-1)*(34*n^2+280*n+
305)*g(n-2) -2*(n-1)*(n-2)*(38*n+145)*g(n-3) -105*(n-1)
*(n-2)*(n-3)*g(n-4))/((n+6)*(n+10)*(n+12)))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(g(d)
*d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35);
CROSSREFS
Column k=7 of A293108.
Sequence in context: A018034 A293735 A293736 * A293738 A293739 A293740
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 15 2017
STATUS
approved