login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220874 Number of permutations of [n+1] avoiding 2413, 3142, 1324, 4231. 1
1, 2, 6, 20, 64, 194, 562, 1570, 4258, 11266, 29186, 74242, 185858, 458754, 1118210, 2695170, 6430722, 15204354, 35651586, 82968578, 191758338, 440401922, 1005584386, 2283798530, 5161091074, 11609833474, 26004684802, 58015612930, 128949682178 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..28.

Andrei Asinowski and Toufik Mansour, Separable d-Permutations and Guillotine Partitions, arXiv:0803.3414 [math.CO], 2008.

Andrei Asinowski and Toufik Mansour, Separable d-Permutations and Guillotine Partitions, Annals of Combinatorics 14 (1) pp.17-43 Springer, 2010.

Index entries for linear recurrences with constant coefficients, signature (9,-32,56,-48,16).

FORMULA

Andrei Asinowski and Toufik Mansour give a g.f.

G.f. -(-7*x+20*x^2-26*x^3+12*x^4+2*x^5+1)/((x-1)*(2*x-1)^4). - R. J. Mathar, Jan 04 2013

a(n) = 2+(n-1)*(n^2+n+42)*2^(n-4)/3 for n>0. - R. J. Mathar, Jan 30 2013 (see Maple section).

MAPLE

A220874 := proc(n)

    if n = 0 then

        1;

    else

        2+(n-1)*(n^2+n+42)*2^(n-4)/3 ;

    end if;

end proc: # R. J. Mathar, Jan 30 2013

MATHEMATICA

a[0] = 1; a[n_] := 2 + (n - 1)*(n^2 + n + 42)*2^(n - 4)/3;

Table[a[n], {n, 0, 28}] (* Jean-Fran├žois Alcover, Dec 01 2017, after R. J. Mathar *)

CROSSREFS

Sequence in context: A193235 A199102 A053730 * A273902 A181301 A302612

Adjacent sequences:  A220871 A220872 A220873 * A220875 A220876 A220877

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 27 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 01:07 EDT 2021. Contains 345404 sequences. (Running on oeis4.)