login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n+1] avoiding 2413, 3142, 1324, 4231.
1

%I #24 Dec 01 2017 11:50:11

%S 1,2,6,20,64,194,562,1570,4258,11266,29186,74242,185858,458754,

%T 1118210,2695170,6430722,15204354,35651586,82968578,191758338,

%U 440401922,1005584386,2283798530,5161091074,11609833474,26004684802,58015612930,128949682178

%N Number of permutations of [n+1] avoiding 2413, 3142, 1324, 4231.

%H Andrei Asinowski and Toufik Mansour, <a href="https://arxiv.org/abs/0803.3414">Separable d-Permutations and Guillotine Partitions</a>, arXiv:0803.3414 [math.CO], 2008.

%H Andrei Asinowski and Toufik Mansour, <a href="https://doi.org/10.1007/s00026-010-0043-8">Separable d-Permutations and Guillotine Partitions</a>, Annals of Combinatorics 14 (1) pp.17-43 Springer, 2010.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9,-32,56,-48,16).

%F Andrei Asinowski and Toufik Mansour give a g.f.

%F G.f. -(-7*x+20*x^2-26*x^3+12*x^4+2*x^5+1)/((x-1)*(2*x-1)^4). - _R. J. Mathar_, Jan 04 2013

%F a(n) = 2+(n-1)*(n^2+n+42)*2^(n-4)/3 for n>0. - _R. J. Mathar_, Jan 30 2013 (see Maple section).

%p A220874 := proc(n)

%p if n = 0 then

%p 1;

%p else

%p 2+(n-1)*(n^2+n+42)*2^(n-4)/3 ;

%p end if;

%p end proc: # _R. J. Mathar_, Jan 30 2013

%t a[0] = 1; a[n_] := 2 + (n - 1)*(n^2 + n + 42)*2^(n - 4)/3;

%t Table[a[n], {n, 0, 28}] (* _Jean-François Alcover_, Dec 01 2017, after _R. J. Mathar_ *)

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Dec 27 2012