login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181301
Number of 2-compositions of n having no column with equal entries. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.
2
1, 2, 6, 20, 64, 206, 662, 2128, 6840, 21986, 70670, 227156, 730152, 2346942, 7543822, 24248256, 77941648, 250529378, 805281526, 2588432308, 8320049072, 26743297998, 85961510758, 276307781200, 888141556360, 2854770939522
OFFSET
0,2
COMMENTS
a(n)=A181299(n,0).
REFERENCES
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.
FORMULA
G.f. = (1+z)(1-z)^2/(1-3z-z^2+z^3).
a(n) = Sum_{k, 0<=k<=n} A060086(n,k)*2^k. - Philippe Deléham, Feb 24 2012
a(n) = 2*A033505(n-1), n>0. - R. J. Mathar, Jul 24 2022
MAPLE
g := (1+z)*(1-z)^2/(1-3*z-z^2+z^3): gser := series(g, z = 0, 30): seq(coeff(gser, z, n), n = 0 .. 27);
CROSSREFS
Cf. A181299.
Sequence in context: A053730 A220874 A273902 * A302612 A005726 A148473
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Oct 12 2010
STATUS
approved