login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005726
Quadrinomial coefficients.
(Formerly M1643)
2
1, 2, 6, 20, 65, 216, 728, 2472, 8451, 29050, 100298, 347568, 1208220, 4211312, 14712960, 51507280, 180642391, 634551606, 2232223626, 7862669700, 27727507521, 97884558992, 345891702456, 1223358393120, 4330360551700
OFFSET
1,2
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = Sum_{k=0..floor(n/2)}, C(n,k) C(n,2k+1). - Paul Barry, May 15 2003
a(n) = Sum[(-1)^k binomial[n,k] binomial[2n-2-4k,n-1],{k,0,Floor[(n-1)/4]}]. - David Callan, Jul 03 2006
G.f.: F(G^(-1)(x)) where F(t) = (t-1)^2*(t^2+1)^2/(2*t^3-t^2+1) and G(t) = t/((t-1)*(t^2+1)). - Mark van Hoeij, Oct 30 2011
Conjecture: 2*(n-1)*(2*n+1)*(13*n-14)*a(n) +(-143*n^3+297*n^2-148*n+12) *a(n-1) -4*(n-1)*(26*n^2-41*n+9)*a(n-2) -16*(n-1)*(n-2)*(13*n-1) *a(n-3)=0. - R. J. Mathar, Nov 13 2012
a(n) = A008287(n,n-1). - Sean A. Irvine, Aug 15 2016
MAPLE
for n from 1 to 40 do printf(`%d, `, coeff(expand(sum(x^j, j=0..3)^n), x, n-1)) od:
F := (t-1)^2*(t^2+1)^2/(2*t^3-t^2+1); G := t/((t-1)*(t^2+1)); Ginv := RootOf(numer(G-x), t); ogf := series(eval(F, t=Ginv), x=0, 20); # Mark van Hoeij, Oct 30 2011
MATHEMATICA
Table[Sum[Binomial[n, k]Binomial[n, 2k+1], {k, 0, Floor[n/2]}], {n, 30}] (* Harvey P. Dale, Oct 19 2013 *)
CROSSREFS
Sequence in context: A273902 A181301 A302612 * A148473 A000718 A148474
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, Aug 21 2000
STATUS
approved