OFFSET
1,2
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
R. K. Guy, Letter to N. J. A. Sloane, 1987
FORMULA
a(n) = Sum_{k=0..floor(n/2)}, C(n,k) C(n,2k+1). - Paul Barry, May 15 2003
a(n) = Sum[(-1)^k binomial[n,k] binomial[2n-2-4k,n-1],{k,0,Floor[(n-1)/4]}]. - David Callan, Jul 03 2006
G.f.: F(G^(-1)(x)) where F(t) = (t-1)^2*(t^2+1)^2/(2*t^3-t^2+1) and G(t) = t/((t-1)*(t^2+1)). - Mark van Hoeij, Oct 30 2011
Conjecture: 2*(n-1)*(2*n+1)*(13*n-14)*a(n) +(-143*n^3+297*n^2-148*n+12) *a(n-1) -4*(n-1)*(26*n^2-41*n+9)*a(n-2) -16*(n-1)*(n-2)*(13*n-1) *a(n-3)=0. - R. J. Mathar, Nov 13 2012
a(n) = A008287(n,n-1). - Sean A. Irvine, Aug 15 2016
MAPLE
for n from 1 to 40 do printf(`%d, `, coeff(expand(sum(x^j, j=0..3)^n), x, n-1)) od:
F := (t-1)^2*(t^2+1)^2/(2*t^3-t^2+1); G := t/((t-1)*(t^2+1)); Ginv := RootOf(numer(G-x), t); ogf := series(eval(F, t=Ginv), x=0, 20); # Mark van Hoeij, Oct 30 2011
MATHEMATICA
Table[Sum[Binomial[n, k]Binomial[n, 2k+1], {k, 0, Floor[n/2]}], {n, 30}] (* Harvey P. Dale, Oct 19 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Aug 21 2000
STATUS
approved