login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060086
Convolution triangle A059594 with extra first column.
2
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 3, 8, 9, 4, 1, 0, 3, 14, 19, 14, 5, 1, 0, 4, 20, 39, 36, 20, 6, 1, 0, 4, 30, 69, 85, 60, 27, 7, 1, 0, 5, 40, 119, 176, 160, 92, 35, 8, 1, 0, 5, 55, 189, 344, 376, 273, 133, 44, 9
OFFSET
0,8
COMMENTS
Riordan array (1, x/((1+x)*(1-x)^2)). - Philippe Deléham, Feb 24 2012
Triangle, read by rows, given by (0, 1, 1, -2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 24 2012
FORMULA
G.f.for column m >= 0: (x/((1-x^2)*(1-x)))^m.
T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k) - T(n-3,k) with T(n,0) = 0^n. - Philippe Deléham, Feb 24 2012
G.f.: (1-x-x^2+x^3)/(1-x-x^2+x^3-y*x). - Philippe Deléham, Feb 24 2012
Sum_{k, 0<=k<=n} T(n,k)*2^k = A181301(n). - Philippe Deléham, Feb 24 2012
EXAMPLE
{1}; {0,1}; {0,1,1}; {0,2,2,1}; ...
Triangle begins :
1
0, 1
0, 1, 1
0, 2, 2, 1
0, 2, 5, 3, 1
0, 3, 8, 9, 4, 1
0, 3, 14, 19, 14, 5, 1
MATHEMATICA
t[0, 0] = 1; t[_, 0] = 0; t[n_, m_] := Sum[ Sum[ Binomial[j, 2*j-3*k-m+n]*(-1)^(j-k)*Binomial[k, j], {j, 0, k}]*Binomial[m+k-1, m-1], {k, 0, n-m}]; Table[t[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
CROSSREFS
Cf. A059594,
Sequence in context: A326280 A350310 A280817 * A308680 A177975 A340995
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Apr 06 2001
STATUS
approved