login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053730
a(n) = 2^(n-2)*(n^2 - n + 4).
3
1, 2, 6, 20, 64, 192, 544, 1472, 3840, 9728, 24064, 58368, 139264, 327680, 761856, 1753088, 3997696, 9043968, 20316160, 45350912, 100663296, 222298112, 488636416, 1069547520, 2332033024, 5066719232, 10972299264, 23689428992
OFFSET
0,2
FORMULA
G.f.: (1-4*x+6*x^2)/(1-2*x)^3. - Colin Barker, Apr 01 2012
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3). - Vincenzo Librandi, Apr 28 2012
a(n) = Sum_{k=0..n} binomial(n,k) * A077028(n,k), where A077028(n,k) = (n-k)*k + 1. - Paul D. Hanna, Oct 11 2015
MAPLE
seq(2^(n-2)*(n^2 -n +4), n=0..30); # G. C. Greubel, Sep 06 2019
MATHEMATICA
CoefficientList[Series[(1-4*x+6*x^2)/(1-2*x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Apr 28 2012 *)
LinearRecurrence[{6, -12, 8}, {1, 2, 6}, 30] (* G. C. Greubel, Sep 06 2019 *)
PROG
(Magma) I:=[1, 2, 6]; [n le 3 select I[n] else 6*Self(n-1)-12*Self(n-2) +8*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 28 2012
(PARI) vector(30, n, 2^(n-3)*(n^2 -3*n +6)) \\ G. C. Greubel, Sep 06 2019
(Sage) [2^(n-2)*(n^2 -n +4) for n in (0..30)] # G. C. Greubel, Sep 06 2019
(GAP) List([0..30], n-> 2^(n-2)*(n^2 -n +4)); # G. C. Greubel, Sep 06 2019
CROSSREFS
Cf. A053545.
Sequence in context: A177792 A193235 A199102 * A220874 A273902 A181301
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 24 2000
STATUS
approved