login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289802
p-INVERT of the quarter-squares (A002620), where p(S) = 1 - S - S^2.
2
1, 4, 15, 53, 185, 643, 2234, 7764, 26988, 93819, 326149, 1133811, 3941521, 13702079, 47633109, 165588965, 575643853, 2001134880, 6956629199, 24183622175, 84070541130, 292257951771, 1015988587832, 3531923782817, 12278174929397, 42683134990390
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.
LINKS
FORMULA
G.f.: (1 - x + 2 x^3 - x^4)/(1 - 5 x + 5 x^2 + 4 x^3 - 12 x^4 + 5 x^5 + 4 x^6 - 4 x^7 + x^8).
a(n) = 5*a(n-1) - 5*a(n-2) - 4*a(n-3) + 12*a(n-4) - 5*a(n-5) - 4*a(n-6) + 4*a(n-7) - a(n-8).
MATHEMATICA
z = 60; s = x/((1 - x)^2*(1 - x^2)); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A002620 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289802 *)
CROSSREFS
Sequence in context: A210781 A367818 A303271 * A071719 A370034 A289927
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 12 2017
STATUS
approved