login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289799
p-INVERT of (n^3), where p(S) = 1 - S - S^2.
2
1, 10, 62, 377, 2232, 13015, 75898, 444014, 2601503, 15244128, 89303905, 523084546, 3063814838, 17945741321, 105115487400, 615706236199, 3606449444722, 21124456768934, 123734572586495, 724763983514112, 4245239506761217, 24866107799273146, 145650985218990062
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.
LINKS
Index entries for linear recurrences with constant coefficients, signature (9, -27, 55, -36, 55, -27, 9, -1)
FORMULA
G.f.: (1 + x - x^2 + 34 x^3 - x^4 + x^5 + x^6)/(1 - 9 x + 27 x^2 - 55 x^3 + 36 x^4 - 55 x^5 + 27 x^6 - 9 x^7 + x^8).
a(n) = 9*a(n-1) - 27*a(n-2) + 55*a(n-3) - 36*a(n-4) + 55*a(n-5) - 27*a(n-6) + 9*a(n-7) - a(n-8).
MATHEMATICA
z = 60; s = x*(1 + 4*x + x^2)/(1 - x)^4; p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000578 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289799 *)
LinearRecurrence[{9, -27, 55, -36, 55, -27, 9, -1}, {1, 10, 62, 377, 2232, 13015, 75898, 444014}, 30] (* Harvey P. Dale, Jan 07 2024 *)
CROSSREFS
Sequence in context: A240157 A350644 A196632 * A027254 A370764 A159240
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 12 2017
STATUS
approved