login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289785
p-INVERT of the (5^n), where p(S) = 1 - S - S^2.
3
1, 7, 48, 325, 2183, 14588, 97161, 645719, 4285240, 28411789, 188257719, 1246893028, 8256349457, 54659946215, 361825274112, 2394939574997, 15851402375719, 104912178457996, 694343294142105, 4595323060281271, 30412598132972936, 201274210714545437
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
See A289780 for a guide to related sequences.
FORMULA
G.f.: (1 - 4 x)/(1 - 11 x + 29 x^2).
a(n) = 11*a(n-1) - 29*a(n-2).
a(n) = (2^(-n-1)*((11-sqrt(5))^(n+1)*(-7+2*sqrt(5)) + (11+sqrt(5))^(n+1)*(7+2*sqrt(5)))) / (29*sqrt(5)). - Colin Barker, Aug 11 2017
a(n) = A081575(n+1)-4*A081575(n). - R. J. Mathar, Jul 08 2022
MATHEMATICA
z = 60; s = x/(1 - 5*x); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000351 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289785 *)
PROG
(PARI) Vec(x*(1 - 4*x) / (1 - 11*x + 29*x^2) + O(x^30)) \\ Colin Barker, Aug 11 2017
CROSSREFS
Sequence in context: A186161 A370037 A081106 * A036829 A164591 A242630
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 10 2017
STATUS
approved