login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183157
Triangle read by rows: T(n,k) is the number of partial isometries of an n-chain of height k (height of alpha = |Im(alpha)|).
2
1, 1, 1, 1, 4, 2, 1, 9, 10, 2, 1, 16, 28, 12, 2, 1, 25, 60, 40, 14, 2, 1, 36, 110, 100, 54, 16, 2, 1, 49, 182, 210, 154, 70, 18, 2, 1, 64, 280, 392, 364, 224, 88, 20, 2, 1, 81, 408, 672, 756, 588, 312, 108, 22, 2, 1, 100, 570, 1080, 1428, 1344, 900, 420, 130, 24, 2
OFFSET
0,5
COMMENTS
Rows also give the coefficients of the clique polynomial of the n X n bishop graph. - Eric W. Weisstein, Jun 04 2017
LINKS
R. Kehinde and A. Umar, On the semigroup of partial isometries of a finite chain, arXiv:1101.2558 [math.GR], 2011.
Eric Weisstein's World of Mathematics, Bishop Graph
Eric Weisstein's World of Mathematics, Clique Polynomial
FORMULA
T(n,0)=1, T(n,1) = n^2 and T(n,k)=2*(2*n-k+1)*binomial(n,k)/(k+1), k > 1.
EXAMPLE
T (3,2) = 10 because there are exactly 10 partial isometries (on a 3-chain) of height 2, namely: (1,2)-->(1,2); (1,2)-->(2,1); (1,2)-->(2,3); (1,2)-->(3,2); (2,3)-->(1,2); (2,3)-->(2,1); (2,3)-->(2,3); (2,3)-->(3,2); (1,3)-->(1,3); (1,3)-->(3,1) - the mappings are coordinate-wise.
The triangle starts
1;
1, 1;
1, 4, 2;
1, 9, 10, 2;
1, 16, 28, 12, 2;
1, 25, 60, 40, 14, 2;
1, 36, 110, 100, 54, 16, 2;
1, 49, 182, 210, 154, 70, 18, 2;
1, 64, 280, 392, 364, 224, 88, 20, 2;
1, 81, 408, 672, 756, 588, 312, 108, 22, 2;
1, 100, 570, 1080, 1428, 1344, 900, 420, 130, 24, 2;
MAPLE
A183157 := proc(n, k) if k =0 then 1; elif k = 1 then n^2 ; else 2*(2*n-k+1)*binomial(n, k)/(k+1) ; end if; end proc: # R. J. Mathar, Jan 06 2011
MATHEMATICA
T[_, 0] = 1; T[n_, 1] := n^2; T[n_, k_] := 2*(2*n - k + 1)*Binomial[n, k] / (k + 1);
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 25 2017 *)
CROSSREFS
Cf. A183156 (row sums), A006331 (k=2), A008911 (k=3), A067056 (k=4).
Sequence in context: A101020 A160905 A208612 * A211957 A338397 A063983
KEYWORD
nonn,tabl
AUTHOR
Abdullahi Umar, Dec 28 2010
STATUS
approved