login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183157 Triangle read by rows: T(n,k) is the number of partial isometries of an n-chain of height k (height of alpha = |Im(alpha)|). 2

%I #22 Jan 06 2019 04:07:26

%S 1,1,1,1,4,2,1,9,10,2,1,16,28,12,2,1,25,60,40,14,2,1,36,110,100,54,16,

%T 2,1,49,182,210,154,70,18,2,1,64,280,392,364,224,88,20,2,1,81,408,672,

%U 756,588,312,108,22,2,1,100,570,1080,1428,1344,900,420,130,24,2

%N Triangle read by rows: T(n,k) is the number of partial isometries of an n-chain of height k (height of alpha = |Im(alpha)|).

%C Rows also give the coefficients of the clique polynomial of the n X n bishop graph. - _Eric W. Weisstein_, Jun 04 2017

%H R. Kehinde and A. Umar, <a href="http://arxiv.org/abs/1101.2558">On the semigroup of partial isometries of a finite chain</a>, arXiv:1101.2558 [math.GR], 2011.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BishopGraph.html">Bishop Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CliquePolynomial.html">Clique Polynomial</a>

%F T(n,0)=1, T(n,1) = n^2 and T(n,k)=2*(2*n-k+1)*binomial(n,k)/(k+1), k > 1.

%e T (3,2) = 10 because there are exactly 10 partial isometries (on a 3-chain) of height 2, namely: (1,2)-->(1,2); (1,2)-->(2,1); (1,2)-->(2,3); (1,2)-->(3,2); (2,3)-->(1,2); (2,3)-->(2,1); (2,3)-->(2,3); (2,3)-->(3,2); (1,3)-->(1,3); (1,3)-->(3,1) - the mappings are coordinate-wise.

%e The triangle starts

%e 1;

%e 1, 1;

%e 1, 4, 2;

%e 1, 9, 10, 2;

%e 1, 16, 28, 12, 2;

%e 1, 25, 60, 40, 14, 2;

%e 1, 36, 110, 100, 54, 16, 2;

%e 1, 49, 182, 210, 154, 70, 18, 2;

%e 1, 64, 280, 392, 364, 224, 88, 20, 2;

%e 1, 81, 408, 672, 756, 588, 312, 108, 22, 2;

%e 1, 100, 570, 1080, 1428, 1344, 900, 420, 130, 24, 2;

%p A183157 := proc(n,k) if k =0 then 1; elif k = 1 then n^2 ; else 2*(2*n-k+1)*binomial(n,k)/(k+1) ; end if; end proc: # R. J. Mathar, Jan 06 2011

%t T[_, 0] = 1; T[n_, 1] := n^2; T[n_, k_] := 2*(2*n - k + 1)*Binomial[n, k] / (k + 1);

%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 25 2017 *)

%Y Cf. A183156 (row sums), A006331 (k=2), A008911 (k=3), A067056 (k=4).

%K nonn,tabl

%O 0,5

%A _Abdullahi Umar_, Dec 28 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 08:27 EDT 2024. Contains 371698 sequences. (Running on oeis4.)