

A101020


Table of numerators of coefficients of certain rational polynomials.


2



1, 1, 1, 1, 4, 2, 1, 9, 6, 2, 1, 16, 24, 32, 8, 1, 25, 200, 40, 40, 8, 1, 36, 150, 160, 360, 32, 16, 1, 49, 294, 490, 280, 56, 112, 16, 1, 64, 1568, 6272, 1120, 3584, 1792, 1024, 128, 1, 81, 864, 14112, 18144, 2016, 5376, 6912, 1152, 128, 1, 100, 1350, 5760, 10080, 8064
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

These rational polynomials R(n;x) appear in the evaluation of an integral in thermal field theories in the Bose case. See the Haber and Weldon reference eq. (D1), p. 1857 and the W. Lang link.


REFERENCES

H. E. Haber and H. A. Weldon, On the relativistic BoseEinstein integrals, J. Math. Phys. 23(10) (1982) 18521858.


LINKS

Table of n, a(n) for n=0..60.
W. Lang: Rational polynomials R(n,x)


FORMULA

a(n, m)= numerator(R(n, x)[x^m]), m=0, ..., n, n=0, 1, ..., with the rational polynomials R(n, x) of degree n defined by R(n, x):=hypergeom([ n, n], [1/2], x/2) = 1 + sum(r(n, m)*x^m, m=1..n), n>=0.
The rational polynomials are R(n, x) = 1 + sum(((binomial(n, m)^2)/binomial(2*m, m))*(2*x)^m, m=1..n), n>=0.
a(n, m)=numerator(r(n, m)) with the rational triangle r(n, m) = (2^m)*(binomial(n, m)^2)/binomial(2*m, m)), m=1..n, n=1, 2, ... and r(n, 0)=1, n>=0, else 0.


EXAMPLE

The rows of the rational table are: [1/1]; [1/1,1/1]; [1/1,4/1,2/3]; [1/1, 9/1, 6/1, 2/5]; ...


CROSSREFS

The denominator table is given in A101021.
Sequence in context: A021241 A016691 A177347 * A160905 A208612 A183157
Adjacent sequences: A101017 A101018 A101019 * A101021 A101022 A101023


KEYWORD

nonn,frac,tabl,easy


AUTHOR

Wolfdieter Lang, Nov 30 2004


STATUS

approved



