login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208612
Triangle of coefficients of polynomials u(n,x) jointly generated with A208613; see the Formula section.
3
1, 1, 1, 1, 4, 2, 1, 9, 9, 3, 1, 16, 26, 19, 5, 1, 25, 60, 70, 38, 8, 1, 36, 120, 197, 167, 73, 13, 1, 49, 217, 469, 553, 375, 137, 21, 1, 64, 364, 994, 1528, 1427, 803, 252, 34, 1, 81, 576, 1932, 3714, 4476, 3449, 1661, 457, 55, 1, 100, 870, 3510, 8196
OFFSET
1,5
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...1
1...4....2
1...9....9....3
1...16...26...19...5
First five polynomials u(n,x):
1
1 + x
1 + 4x + 2x^2
1 + 9x + 9x^2 + 3x^3
1 + 16x + 26x^2 + 19x^3 + 5x^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208612 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208613 *)
CROSSREFS
Cf. A208613.
Sequence in context: A177347 A101020 A160905 * A183157 A211957 A338397
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 01 2012
STATUS
approved