|
|
A101017
|
|
Indices of primes in sequence defined by A(0) = 93, A(n) = 10*A(n-1) + 53 for n > 0.
|
|
1
|
|
|
1, 2, 31, 41, 74, 367, 1391, 16349, 49100, 49688, 91839
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Numbers n such that (890*10^n - 53)/9 is prime.
Numbers n such that digit 9 followed by n >= 0 occurrences of digit 8 followed by digit 3 is prime.
Numbers corresponding to terms <= 367 are certified primes.
a(12) > 10^5. - Robert Price, Nov 12 2015
|
|
REFERENCES
|
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
|
|
LINKS
|
Table of n, a(n) for n=1..11.
Makoto Kamada, Prime numbers of the form 988...883.
Index entries for primes involving repunits.
|
|
FORMULA
|
a(n) = A103108(n) - 1.
|
|
EXAMPLE
|
9883 is prime, hence 2 is a term.
|
|
MATHEMATICA
|
Flatten[Position[NestList[10#+53&, 93, 1500], _?(PrimeQ[#]&)]]-1
Select[Range[0, 100000], PrimeQ[(890*10^# - 53)/9] &] (* Robert Price, Nov 12 2015 *)
|
|
PROG
|
(PARI) a=93; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+53)
(PARI) for(n=0, 1500, if(isprime((890*10^n-53)/9), print1(n, ", ")))
|
|
CROSSREFS
|
Cf. A000533, A002275, A103108.
Sequence in context: A264783 A215031 A120638 * A207973 A193423 A241484
Adjacent sequences: A101014 A101015 A101016 * A101018 A101019 A101020
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Nov 27 2004
|
|
EXTENSIONS
|
a(8)-a(10) from Kamada data by Ray Chandler, Apr 29 2015
a(11) from Robert Price, Nov 12 2015
|
|
STATUS
|
approved
|
|
|
|