OFFSET
1,2
COMMENTS
Numbers n such that (890*10^n - 53)/9 is prime.
Numbers n such that digit 9 followed by n >= 0 occurrences of digit 8 followed by digit 3 is prime.
Numbers corresponding to terms <= 367 are certified primes.
a(12) > 10^5. - Robert Price, Nov 12 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A103108(n) - 1.
EXAMPLE
9883 is prime, hence 2 is a term.
MATHEMATICA
Flatten[Position[NestList[10#+53&, 93, 1500], _?(PrimeQ[#]&)]]-1
Select[Range[0, 100000], PrimeQ[(890*10^# - 53)/9] &] (* Robert Price, Nov 12 2015 *)
PROG
(PARI) a=93; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+53)
(PARI) for(n=0, 1500, if(isprime((890*10^n-53)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Nov 27 2004
EXTENSIONS
a(8)-a(10) from Kamada data by Ray Chandler, Apr 29 2015
a(11) from Robert Price, Nov 12 2015
STATUS
approved