The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266330 Triangle, read by rows, of the coefficients in the g.f.: Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n. 1
 -1, 1, -1, 0, 1, -1, 1, -1, 1, -1, 0, 0, 0, 1, -1, 2, 0, -2, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 3, -1, 1, -3, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 4, 0, 0, 0, -4, 0, 0, 0, 1, -1, 0, -3, 0, 3, 0, 0, 0, 0, 0, 1, -1, 5, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 6, -6, 1, -1, 6, 0, -6, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 7, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 1, -1, 0, -10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 8, 0, 4, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 9, -15, 0, 0, 0, 0, 15, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 10, 0, 10, -1, 1, -10, 0, 0, 0, 0, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -21, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 12, -28, 20, 0, 0, 0, -20, 0, 28, 0, 0, 0, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -5, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,16 COMMENTS Compare to the curious identity: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0. Note that the g.f.: A(x,y) = Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n may be written A(x,y) = Sum_{n>=0} R(n,y) * x^n / y^(n+1) such that row polynomials R(n,y) consist of square powers of y: R(n,y) = Sum_{k=0..n+1} T(n,k) * y^(k^2). LINKS FORMULA G.f.: -(1/y)/(1-z) + (1/y) * Sum_{n>=1} y^(n^2) * ( z^(n-1)*(1 - z^(n-1))^(n-1)  +  z^(n*(n+1)) / (z^(n+1) - 1)^(n+1) ) )  =  Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n, where z = x/y. Row sums are all zeros. Row sums of absolute values of terms yield 2 * A217668(n) for row n>=0. Sum_{k=0..2*n+1} (-1)^k * T(2*n,k) = (-2) * A260147(n) for n>=0. Sum_{k=0..2*n+2} (-1)^k * T(2*n+1,k) = 0 for n>=0. Sum_{k=0..2*n+1} I^(k^2) * T(2*n,k) = (I-1) * A260147(n) for n>=0, where I^2 = -1. Sum_{k=0..2*n+2} I^(k^2) * T(2*n+1,k) = 0 for n>=0, where I^2 = -1. EXAMPLE This triangle of coefficients T(n,k) begins: -1, 1; -1, 0, 1; -1, 1, -1, 1; -1, 0, 0, 0, 1; -1, 2, 0, -2, 0, 1; -1, 0, 0, 0, 0, 0, 1; -1, 3, -1, 1, -3, 0, 0, 1; -1, 0, 0, 0, 0, 0, 0, 0, 1; -1, 4, 0, 0, 0, -4, 0, 0, 0, 1; -1, 0, -3, 0, 3, 0, 0, 0, 0, 0, 1; -1, 5, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1; -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; -1, 6, -6, 1, -1, 6, 0, -6, 0, 0, 0, 0, 0, 1; -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; -1, 7, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 1; -1, 0, -10, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; -1, 8, 0, 4, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 1; -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; -1, 9, -15, 0, 0, 0, 0, 15, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0, 0, 1; -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; -1, 10, 0, 10, -1, 1, -10, 0, 0, 0, 0, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; -1, 0, -21, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; -1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; -1, 12, -28, 20, 0, 0, 0, -20, 0, 28, 0, 0, 0, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; -1, 0, 0, 0, -5, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; ... in which the g.f. of column k > 0 is given by: z^(k-1)*(1 - z^(k-1))^(k-1)  +  z^(k*(k+1))/(z^(k+1) - 1)^(k+1). ... G.f.: A(x,y) = Sum_{n=-oo..+oo} x^n * y^n * (y^n - x^n)^n  may be written as A(x,y) = Sum_{n>=0} R(n,y) * x^n / y^(n+1), where row polynomials R(n,y) consist of square powers of y: R(n,y) = Sum_{k=0..n+1} T(n,k) * y^(k^2); this triangle lists the coefficients of y^(k^2) in R(n,y), which begin: R(0,y) = y - 1; R(1,y) = y^4 - 1; R(2,y) = y^9 - y^4 + y - 1; R(3,y) = y^16 - 1; R(4,y) = y^25 - 2*y^9 + 2*y - 1; R(5,y) = y^36 - 1; R(6,y) = y^49 - 3*y^16 + y^9 - y^4 + 3*y - 1; R(7,y) = y^64 - 1; R(8,y) = y^81 - 4*y^25 + 4*y - 1; R(9,y) = y^100 + 3*y^16 - 3*y^4 - 1; R(10,y) = y^121 - 5*y^36 + 5*y - 1; R(11,y) = y^144 - 1; R(12,y) = y^169 - 6*y^49 + 6*y^25 - y^16 + y^9 - 6*y^4 + 6*y - 1; R(13,y) = y^196 - 1; R(14,y) = y^225 - 7*y^64 + 7*y - 1; R(15,y) = y^256 + 10*y^36 - 10*y^4 - 1; R(16,y) = y^289 - 8*y^81 - 4*y^25 + 4*y^9 + 8*y - 1; R(17,y) = y^324 - 1; R(18,y) = y^361 - 9*y^100 + 15*y^49 - 15*y^4 + 9*y - 1; R(19,y) = y^400 - 1; R(20,y) = y^441 - 10*y^121 - 10*y^36 + y^25 - y^16 + 10*y^9 + 10*y - 1; R(21,y) = y^484 + 21*y^64 - 21*y^4 - 1; R(22,y) = y^529 - 11*y^144 + 11*y - 1; R(23,y) = y^576 - 1; R(24,y) = y^625 - 12*y^169 + 28*y^81 - 20*y^49 + 20*y^9 - 28*y^4 + 12*y - 1; R(25,y) = y^676 + 5*y^36 - 5*y^16 - 1; R(26,y) = y^729 - 13*y^196 + 13*y - 1; ... PROG (PARI) /* Prints rows 0..50 of this triangle: */ {SUM=sum(n=-51, 51, x^n*y^n*(y^n-x^n +O(x^51))^n); V=Vec(SUM); T(n, k)=polcoeff(V[n+1]*y^(n+1) + y*O(y^((n+1)^2)), k^2)} for(n=0, 50, for(k=0, n+1, print1( T(n, k), ", ")); print("")) (PARI) /* Quick print of row polynomials (informal): */ {SUM=sum(n=-51, 51, x^n*y^n*(y^n-x^n +O(x^51))^n); V=Vec(SUM); for(n=1, 50, print("R("n-1", y) = "V[n]*y^n"; ")) } (PARI) /* Compare these sums (informal sanity check): */ Axy = sum(n=-16, 16, x^n*y^n*(y^n-x^n +O(x^16))^n ) Axy = -(1/y)/(1-x/y) + sum(n=1, 15, y^(n^2-1) * ( (x/y)^(n-1)*(1 - (x/y)^(n-1))^(n-1)  +  (x/y)^(n*(n+1)) / ((x/y)^(n+1) - 1)^(n+1) ) +O(x^16) ) CROSSREFS Cf. A217668, A260147 (y=-1). Sequence in context: A219203 A341981 A226786 * A320313 A319227 A219490 Adjacent sequences:  A266327 A266328 A266329 * A266331 A266332 A266333 KEYWORD sign,tabf AUTHOR Paul D. Hanna, Dec 27 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 05:07 EDT 2021. Contains 347664 sequences. (Running on oeis4.)