login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258798
a(n) = [x^n] Product_{k=1..n} (1+x^k)^3 / x^k.
2
1, 3, 12, 62, 327, 1851, 10802, 64440, 391218, 2408001, 14989608, 94197594, 596756374, 3807010920, 24435261432, 157681777148, 1022391454116, 6657413851086, 43517229086467, 285447137446989, 1878287880309900, 12395149957521672, 82014499806039711
OFFSET
0,2
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 7.036711302278424796297167109247361745558645910729132828752853658917..., c = 2.3254811458... .
MATHEMATICA
Table[SeriesCoefficient[Product[(1+x^k)^3/x^k, {k, 1, n}], {x, 0, n}], {n, 0, 30}]
Table[SeriesCoefficient[Product[1+x^k, {k, 1, n}]^3, {x, 0, n*(n+3)/2}], {n, 0, 30}]
(* A program to compute the constant d *) (1+r)^3/r^2 /.FindRoot[-Pi^2/12 - Log[r]^2/3 + 1/2*Log[1+r]^2 + PolyLog[2, 1/(1+r)] == 0, {r, E}, WorkingPrecision->100]
CROSSREFS
Sequence in context: A158691 A365299 A038171 * A369709 A074516 A045740
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 10 2015
STATUS
approved