Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 08 2023 04:51:45
%S 1,9,70,535,4101,31633,245512,1915875,15020545,118231212,933812892,
%T 7397179309,58746824150,467602683135,3729318261224,29795160492299,
%U 238421091129957,1910544426355420,15329353155160880,123138401704273620
%N Number of edges in all noncrossing forests on n nodes on a circle.
%H Andrew Howroyd, <a href="/A045739/b045739.txt">Table of n, a(n) for n = 2..200</a>
%F a(n) = Sum_{k=1..n-1} k*binomial(n, k+1)*binomial(n+2*k-1, k)/(n+k).
%F a(n) = Sum_{k=1..n-1} k*A094040(n, k). - _Andrew Howroyd_, Nov 17 2017
%F Conjecture D-finite with recurrence -8*(n-1)*(42011*n-237357)*(2*n-1)*a(n) -2*(2*n-3)*(168044*n^2+2298095*n-1588326)*a(n-1) +2*(-8750238*n^3+268256261*n^2-1419101561*n+1999934970)*a(n-2) +4*(137297737*n^3-1755498200*n^2+7473395243*n-10564858105)*a(n-3) +5*(25384204*n^3-350504439*n^2+1587560537*n-2286713022)*a(n-4) -25*(n-4)*(n-7)*(3362075*n-9824604)*a(n-5)=0. - _R. J. Mathar_, Jul 26 2022
%F a(n) ~ sqrt(-1 + sqrt(115/111)*sin((Pi + arctan(411*sqrt(111)/2363))/3)) * ((8/3 + 2*sqrt(70)*(sin((Pi + arctan(4537/(111*sqrt(111))))/3)/3))^n / sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 08 2023
%o (PARI) a(n) = sum(k=1, n-1, k*binomial(n, k+1)*binomial(n+2*k-1, k)/(n+k)); \\ _Andrew Howroyd_, Nov 12 2017
%Y Cf. A094040.
%K nonn
%O 2,2
%A _Emeric Deutsch_