OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500
FORMULA
a(n) ~ 2^(8*n-3/2) / (7*sqrt(Pi*n)*3^(3*n-3/2)). - Vaclav Kotesovec, Jul 16 2014
Recurrence (of order 2): 6*n*(3*n - 4)*(3*n - 2)*(77*n^2 - 244*n + 191)*a(n) = (37345*n^5 - 212742*n^4 + 463115*n^3 - 476646*n^2 + 228792*n - 40320)*a(n-1) + 8*(2*n - 3)*(4*n - 7)*(4*n - 5)*(77*n^2 - 90*n + 24)*a(n-2). - Vaclav Kotesovec, Jul 16 2014
EXAMPLE
a(0) = 1: [].
a(1) = 1: [2].
a(2) = 9: [2,1], [2,3], [2,4], [3,1], [3,2], [3,4], [4,1], [4,2], [4,3].
a(3) = 70: [2,3,1], [2,3,2], [2,3,4], ..., [6,5,2], [6,5,3], [6,5,4].
a(4) = 581: [2,3,2,1], [2,3,4,1], [2,3,4,2], ..., [8,7,6,3], [8,7,6,4], [8,7,6,5].
MAPLE
a:= proc(n) option remember; `if`(n<3, (2*n-1)^2,
((49421666742*n^4 -205832874348*n^3 +295740702162*n^2
-167673767628*n +29628103680) *a(n-1)
+(27981954763*n^4 -127816385262*n^3 +231525900473*n^2
-221063690262*n +102518080560) *a(n-2)
+29529976*(2*n-5)*(4*n-9)*(n-3)*(4*n-11) *a(n-3))
/ (288*n*(2131486*n-3539195)*(3*n-4)*(3*n-2)))
end:
seq(a(n), n=0..30);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 22 2013
STATUS
approved