|
|
A231419
|
|
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order
|
|
12
|
|
|
9, 71, 50, 514, 1032, 285, 3838, 20896, 15125, 1617, 28486, 424404, 844061, 221445, 9188, 212060, 8704406, 46978621, 34099824, 3245016, 52193, 1578180, 178277756, 2655479347, 5203044823, 1378646988, 47557773, 296511, 11748804, 3654045516
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
....9......71........514.........3838...........28486.............212060
...50....1032......20896.......424404.........8704406..........178277756
..285...15125.....844061.....46978621......2655479347.......149618567148
.1617..221445...34099824...5203044823....811353885448....125876025896444
.9188.3245016.1378646988.576572713438.248018799189236.105946496489105569
|
|
LINKS
|
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = 6*a(n-1) -11*a(n-3) +4*a(n-4)
k=2: [order 7]
k=3: [order 34]
k=4: [order 99]
Empirical for row n:
n=1: a(n) = 8*a(n-1) +4*a(n-2) -58*a(n-3) -24*a(n-4) +40*a(n-5) -16*a(n-6)
n=2: [order 28]
|
|
EXAMPLE
|
Some solutions for n=2 k=4
..0..0..1..2..2....0..0..0..1..2....0..0..1..1..0....0..0..1..0..2
..2..1..2..0..0....1..2..1..0..0....1..1..0..2..1....2..2..1..2..0
..2..1..1..2..0....0..0..1..1..2....2..2..1..0..1....0..1..2..1..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|