login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order
12

%I #4 Nov 08 2013 21:27:08

%S 9,71,50,514,1032,285,3838,20896,15125,1617,28486,424404,844061,

%T 221445,9188,212060,8704406,46978621,34099824,3245016,52193,1578180,

%U 178277756,2655479347,5203044823,1378646988,47557773,296511,11748804,3654045516

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order

%C Table starts

%C ....9......71........514.........3838...........28486.............212060

%C ...50....1032......20896.......424404.........8704406..........178277756

%C ..285...15125.....844061.....46978621......2655479347.......149618567148

%C .1617..221445...34099824...5203044823....811353885448....125876025896444

%C .9188.3245016.1378646988.576572713438.248018799189236.105946496489105569

%H R. H. Hardin, <a href="/A231419/b231419.txt">Table of n, a(n) for n = 1..70</a>

%F Empirical for column k:

%F k=1: a(n) = 6*a(n-1) -11*a(n-3) +4*a(n-4)

%F k=2: [order 7]

%F k=3: [order 34]

%F k=4: [order 99]

%F Empirical for row n:

%F n=1: a(n) = 8*a(n-1) +4*a(n-2) -58*a(n-3) -24*a(n-4) +40*a(n-5) -16*a(n-6)

%F n=2: [order 28]

%e Some solutions for n=2 k=4

%e ..0..0..1..2..2....0..0..0..1..2....0..0..1..1..0....0..0..1..0..2

%e ..2..1..2..0..0....1..2..1..0..0....1..1..0..2..1....2..2..1..2..0

%e ..2..1..1..2..0....0..0..1..1..2....2..2..1..0..1....0..1..2..1..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 08 2013