login
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order
12

%I #4 Nov 08 2013 21:27:08

%S 9,71,50,514,1032,285,3838,20896,15125,1617,28486,424404,844061,

%T 221445,9188,212060,8704406,46978621,34099824,3245016,52193,1578180,

%U 178277756,2655479347,5203044823,1378646988,47557773,296511,11748804,3654045516

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order

%C Table starts

%C ....9......71........514.........3838...........28486.............212060

%C ...50....1032......20896.......424404.........8704406..........178277756

%C ..285...15125.....844061.....46978621......2655479347.......149618567148

%C .1617..221445...34099824...5203044823....811353885448....125876025896444

%C .9188.3245016.1378646988.576572713438.248018799189236.105946496489105569

%H R. H. Hardin, <a href="/A231419/b231419.txt">Table of n, a(n) for n = 1..70</a>

%F Empirical for column k:

%F k=1: a(n) = 6*a(n-1) -11*a(n-3) +4*a(n-4)

%F k=2: [order 7]

%F k=3: [order 34]

%F k=4: [order 99]

%F Empirical for row n:

%F n=1: a(n) = 8*a(n-1) +4*a(n-2) -58*a(n-3) -24*a(n-4) +40*a(n-5) -16*a(n-6)

%F n=2: [order 28]

%e Some solutions for n=2 k=4

%e ..0..0..1..2..2....0..0..0..1..2....0..0..1..1..0....0..0..1..0..2

%e ..2..1..2..0..0....1..2..1..0..0....1..1..0..2..1....2..2..1..2..0

%e ..2..1..1..2..0....0..0..1..1..2....2..2..1..0..1....0..1..2..1..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 08 2013