login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000900
Number of solutions to the rook problem on an n X n board having a certain symmetry group (see Robinson for details).
(Formerly M1964 N0777)
12
0, 0, 0, 1, 2, 10, 28, 106, 344, 1272, 4592, 17692, 69384, 283560, 1191984, 5171512, 23087168, 105883456, 498572416, 2404766224, 11878871456, 59975885856, 309439708352, 1628919330208, 8746079933568, 47840206525056
OFFSET
0,5
REFERENCES
L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 222.
E. Lucas, Théorie des nombres (annotated scans of a few selected pages)
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
FORMULA
a(n)=(A000085(n)-A000898(int(n/2)))/2
For asymptotics see the Robinson paper.
MAPLE
For Maple program see A000903.
MATHEMATICA
a85[n_] := Sum[ (2k)!/k!/2^k Binomial[n, 2k], {k, 0, n/2}]; a898[n_] := Sum[ 2^k*StirlingS1[n, k]*BellB[k], {k, 0, n}]; a[n_] := (a85[n] - a898[Floor[n/2]])/2; a[1] = 0; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 13 2011, after formula *)
CROSSREFS
Sequence in context: A296380 A291053 A104657 * A124023 A127921 A371943
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Vladeta Jovovic, May 09 2000
STATUS
approved