|
|
A000901
|
|
Number of solutions to the rook problem on a 2n X 2n board having a certain symmetry group (see Robinson for details).
(Formerly M4446 N1881)
|
|
3
|
|
|
0, 0, 7, 74, 882, 11144, 159652, 2571960, 46406392, 928734944, 20436096048, 490489794464, 12752891909920, 357081983435904, 10712466529388608, 342798976818878336, 11655165558112403328, 419585962575107694080
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
REFERENCES
|
L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Table of n, a(n) for n=1..18.
L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 222.
E. Lucas, Théorie des nombres (annotated scans of a few selected pages)
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
R. G. Wilson, v, Comments on the Larsen paper (no date)
|
|
FORMULA
|
For asymptotics see the Robinson paper.
|
|
MAPLE
|
For Maple program see A000903.
|
|
CROSSREFS
|
Sequence in context: A137141 A275618 A114472 * A295245 A341330 A266305
Adjacent sequences: A000898 A000899 A000900 * A000902 A000903 A000904
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
N. J. A. Sloane, Robert G. Wilson v
|
|
EXTENSIONS
|
Corrected and extended by Sean A. Irvine, Aug 23 2011
|
|
STATUS
|
approved
|
|
|
|