login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071549
a(n) = (7n)!/n!^7.
10
1, 5040, 681080400, 182509367040000, 66475579247327250000, 28837919555681211870935040, 14007180988362844601443040716800, 7363615666157189603982585462030336000, 4104167472585675600759440022842715359250000, 2392741010223442438553822446842770682716580000000
OFFSET
0,2
COMMENTS
Number of closed paths of length 7n whose steps are 7th roots of unity. - Andrew Howroyd, Nov 01 2018
LINKS
Gilbert Labelle and Annie Lacasse, Closed paths whose steps are roots of unity, in FPSAC 2011, Reykjavik, Iceland DMTCS proc. AO, 2011, 599-610.
FORMULA
From Peter Bala, Feb 14 2020: (Start)
a(n) = C(7*n,n)*C(6*n,n)*C(5*n,n)*C(4*n,n)*C(3*n,n)*C(2*n,n).
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, Equation 39, p. 12.
a(n) = [x^n](F(x)^(5040*n)), where F(x) = 1 + x + 62528*x^2 + 11087269661*x^3 + 3021437267047869*x^4 + 1045823730475703710735*x^5 + ...
appears to have integer coefficients. For similar results see A008979.
a(n) = [(x*y*z*u*v*w)^n] (1 + x + y + z + u + v + w)^(7*n). (End)
MATHEMATICA
Table[(7 n)!/(n)!^7, {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2014 *)
PROG
(Magma) [Factorial(7*n)/Factorial(n)^7: n in [0..20]]; // Vincenzo Librandi, Aug 13 2014
(PARI) a(n) = (7*n)!/(n!^7); \\ Andrew Howroyd, Nov 01 2018
CROSSREFS
Row n=7 of A187783, column k=7 of A089759.
Sequences (k*n)!/n!^k: A000984 (k = 2), A006480 (k =3), A008977 (k = 4), A008978 (k = 5), A008979 (k = 6), A071550 (k = 8), A071551 (k = 9), A071552 (k = 10).
Sequence in context: A172544 A287083 A158039 * A181752 A208193 A259112
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 30 2002
EXTENSIONS
a(8)-a(9) added by Andrew Howroyd, Nov 01 2018
STATUS
approved