login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323394
Carryless sum of divisors of n.
3
1, 3, 4, 7, 6, 2, 8, 5, 3, 18, 12, 18, 14, 14, 14, 11, 18, 19, 10, 32, 22, 36, 24, 30, 21, 32, 20, 36, 20, 52, 32, 43, 48, 44, 38, 51, 38, 40, 46, 70, 42, 76, 44, 74, 58, 62, 48, 84, 47, 83, 62, 88, 54, 80, 62, 80, 60, 70, 50, 48, 62, 96, 84, 7, 74, 24, 68, 6
OFFSET
1,2
COMMENTS
This sequence is a variant of A178910 for the base 10.
FORMULA
a(n) <= A000203(n).
EXAMPLE
For n = 42:
- the divisors of 42 are: 1, 2, 3, 6, 7, 14, 21, 42,
- the sum of the units is: 1 + 2 + 3 + 6 + 7 + 4 + 1 + 2 = 26 == 6 (mod 10),
- the sum of the tens is: 1 + 2 + 4 = 7,
- hence a(42) = 76.
For n = 973:
- the divisors of 973 are: 1, 7, 139, 973,
- the sum of the units is: 1 + 7 + 9 + 3 = 20 == 0 (mod 10),
- the sum of the tens is: 3 + 7 = 10 == 0 (mod 10),
- the sum of the hundreds is: 1 + 9 = 10 == 0 (mod 10),
- hence a(973) = 0.
MAPLE
f:= proc(n) local t, d, dd, m, i;
t:= Vector(convert(n, base, 10));
for d in numtheory:-divisors(n) minus {n} do
dd:= convert(d, base, 10);
m:= nops(dd);
t[1..m]:= t[1..m] + Vector(dd) mod 10;
od:
add(t[i]*10^(i-1), i=1..ilog10(n)+1)
end proc:
map(f, [$1..100]); # Robert Israel, Jan 15 2019
PROG
(PARI) a(n, base=10) = my (v=[]); fordiv (n, d, my (w=Vecrev(digits(d, base))); v=vector(max(#v, #w), k, (if (k>#v, w[k], k>#w, v[k], (v[k]+w[k])%base)))); fromdigits(Vecrev(v), base)
CROSSREFS
Cf. A000203, A169890, A178910, A323414 (positions of zeros), A323415 (fixed points).
Sequence in context: A316570 A105853 A277216 * A348977 A017665 A248789
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jan 13 2019
STATUS
approved