login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323397
a(n) = (4^n + 15*n - 1)/9.
1
0, 2, 5, 12, 35, 122, 465, 1832, 7295, 29142, 116525, 466052, 1864155, 7456562, 29826185, 119304672, 477218615, 1908874382, 7635497445, 30541989692, 122167958675, 488671834602, 1954687338305, 7818749353112, 31274997412335, 125099989649222, 500399958596765
OFFSET
0,2
COMMENTS
Conjecture: satisfies a linear recurrence having signature (6, -9, 4). (This is correct, see Formula section.)
REFERENCES
Roman Andronov, How can I prove that 4^n+15n-1 is divisible by 9?, Quora Digest (Nov. 17, 2018).
FORMULA
a(n+1) = 4*a(n) - 5*n + 2, with a(0)=0, a(1)=2. This implies a(n+2) = 5*a(n+1) - 4*a(n) - 5, and also that a(n+3) = 6*a(n+2) - 9*a(n+1) + 4*a(n). - N. J. A. Sloane, Jan 13 2019
G.f.: x*(2 - 7*x) / ((1 - x)^2*(1 - 4*x)). - Colin Barker, Jan 19 2019
MATHEMATICA
Table[(4^n+15n-1)/9, {n, 0, 40}]
PROG
(PARI) concat(0, Vec(x*(2 - 7*x) / ((1 - x)^2*(1 - 4*x)) + O(x^30))) \\ Colin Barker, Jan 19 2019
CROSSREFS
Sequence in context: A000105 A055192 A108555 * A292169 A283799 A225798
KEYWORD
nonn,easy
AUTHOR
Harvey P. Dale, Jan 13 2019
STATUS
approved