OFFSET
0,2
COMMENTS
Conjecture: satisfies a linear recurrence having signature (6, -9, 4). (This is correct, see Formula section.)
REFERENCES
Roman Andronov, How can I prove that 4^n+15n-1 is divisible by 9?, Quora Digest (Nov. 17, 2018).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,-9,4).
FORMULA
a(n+1) = 4*a(n) - 5*n + 2, with a(0)=0, a(1)=2. This implies a(n+2) = 5*a(n+1) - 4*a(n) - 5, and also that a(n+3) = 6*a(n+2) - 9*a(n+1) + 4*a(n). - N. J. A. Sloane, Jan 13 2019
G.f.: x*(2 - 7*x) / ((1 - x)^2*(1 - 4*x)). - Colin Barker, Jan 19 2019
MATHEMATICA
Table[(4^n+15n-1)/9, {n, 0, 40}]
PROG
(PARI) concat(0, Vec(x*(2 - 7*x) / ((1 - x)^2*(1 - 4*x)) + O(x^30))) \\ Colin Barker, Jan 19 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Harvey P. Dale, Jan 13 2019
STATUS
approved