OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
Recursion: see Maple program.
a(n) = A282869(2n,n).
From Vaclav Kotesovec, Mar 26 2018: (Start)
Recurrence: 3*n*(3*n + 1)*(3*n + 2)*(3*n^3 - 11*n^2 + 10*n - 3)*a(n) = - 24*(2*n - 1)*(6*n^3 - 1)*a(n-1) + 64*(n-1)*(2*n - 3)*(2*n - 1)*(3*n^3 - 2*n^2 - 3*n - 1)*a(n-2).
a(n) ~ ((3+2*sqrt(3)) - (-1)^n*(3-2*sqrt(3))) * 2^(4*n + 1) / (sqrt(Pi*n) * 3^(3*n/2 + 2)). (End)
MAPLE
a:= proc(n) option remember; `if`(n<3, 1+n^2, ((512*(2*n-5))
*(2519*n-1279)*(n-2)*(2*n-3)*a(n-3) +(192*(2*n-3))
*(1710*n^3-443*n^2-4990*n+2483)*a(n-2) -(24*(22671*n^4
-124866*n^3+216436*n^2-129032*n+24526))*a(n-1))
/ ((3*n+2)*(27*n+9)*(855*n-1504)*n))
end:
seq(a(n), n=0..30);
MATHEMATICA
b[x_, y_, m_] := b[x, y, m] = If[x == 0, z^m, If[y > 0, b[x - 1, y - 1, m], 0] + If[y == 0, b[x - 1, y, m], 0] + b[x - 1, y + 1, Max[m, y + 1]]];
a[n_] := Coefficient[b[2n, 0, 0], z, n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 16 2017
STATUS
approved