login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A283799
Number of dispersed Dyck prefixes of length 2n and height n.
3
1, 2, 5, 12, 36, 90, 286, 728, 2380, 6120, 20349, 52668, 177100, 460460, 1560780, 4071600, 13884156, 36312408, 124403620, 326023280, 1121099408, 2942885946, 10150595910, 26681566392, 92263734836, 242799302200, 841392966470, 2216352204360, 7694644696200
OFFSET
0,2
LINKS
FORMULA
Recursion: see Maple program.
a(n) = A282869(2*n, n).
From Vaclav Kotesovec, Mar 26 2018: (Start)
Recurrence: 3*n*(3*n + 1)*(3*n + 2)*(3*n^3 - 11*n^2 + 10*n - 3)*a(n) = - 24*(2*n - 1)*(6*n^3 - 1)*a(n-1) + 64*(n-1)*(2*n - 3)*(2*n - 1)*(3*n^3 - 2*n^2 - 3*n - 1)*a(n-2).
a(n) ~ ((3+2*sqrt(3)) - (-1)^n*(3-2*sqrt(3))) * 2^(4*n + 1) / (sqrt(Pi*n) * 3^(3*n/2 + 2)). (End)
From Peter Luschny, Jan 17 2025: (Start)
a(n) = binomial(2*n, n - floor(n/2 + 1/2)) + binomial(2*n, floor(n/2 + 1/2) - 1).
a(n) = A379822(n, (n + 1)/2). (End)
MAPLE
a:= proc(n) option remember; `if`(n<3, 1+n^2, ((512*(2*n-5))
*(2519*n-1279)*(n-2)*(2*n-3)*a(n-3) +(192*(2*n-3))
*(1710*n^3-443*n^2-4990*n+2483)*a(n-2) -(24*(22671*n^4
-124866*n^3+216436*n^2-129032*n+24526))*a(n-1))
/ ((3*n+2)*(27*n+9)*(855*n-1504)*n))
end:
seq(a(n), n=0..30);
a := n -> binomial(2*n, n-iquo(n+1, 2)) + binomial(2*n, iquo(n+1, 2)-1):
seq(a(n), n = 0..28); # Peter Luschny, Jan 17 2025
MATHEMATICA
b[x_, y_, m_] := b[x, y, m] = If[x == 0, z^m, If[y > 0, b[x - 1, y - 1, m], 0] + If[y == 0, b[x - 1, y, m], 0] + b[x - 1, y + 1, Max[m, y + 1]]];
a[n_] := Coefficient[b[2n, 0, 0], z, n];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A282869 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Alois P. Heinz, Mar 16 2017
STATUS
approved