OFFSET
0,1
COMMENTS
An Engel expansion of 1/2 to the base 2 as defined in A181565, with the associated series expansion 1/2 = 2/5 + 2^2/(5*9) + 2^3/(5*9*17) + 2^4/(5*9*17*33) + ... . - Peter Bala, Oct 28 2013
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..238
Index entries for linear recurrences with constant coefficients, signature (3,-2).
FORMULA
a(n) = 2^(n+2) + 1.
a(n) = 3*a(n-1) - 2*a(n-2).
G.f.: -(6*x-5) / ((x-1)*(2*x-1)). - Colin Barker, Jun 21 2014
E.g.f.: exp(x)*(1 + 4*exp(x)). - Stefano Spezia, Oct 08 2022
MATHEMATICA
LinearRecurrence[{3, -2}, {5, 9}, 40] (* Harvey P. Dale, Jun 10 2015 *)
PROG
(Magma) [2^(n+2)+1: n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011
(PARI) a(n)=2^(n+2)+1 \\ Charles R Greathouse IV, Jun 05 2013
(PARI) Vec(-(6*x-5)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Jun 21 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved