login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083575
a(0) = 6; for n>0, a(n) = 2*a(n-1) - 1.
15
6, 11, 21, 41, 81, 161, 321, 641, 1281, 2561, 5121, 10241, 20481, 40961, 81921, 163841, 327681, 655361, 1310721, 2621441, 5242881, 10485761, 20971521, 41943041, 83886081, 167772161, 335544321, 671088641, 1342177281, 2684354561, 5368709121, 10737418241
OFFSET
0,1
COMMENTS
The primes in this sequence are listed in A050526. - M. F. Hasler, Oct 30 2010
An Engel expansion of 2/5 to the base 2 as defined in A181565, with the associated series expansion 2/5 = 2/6 + 2^2/(6*11) + 2^3/(6*11*21) + 2^4/(6*11*21*41) + ... . - Peter Bala, Oct 29 2013
FORMULA
a(n) = 5*2^n + 1. - M. F. Hasler, Oct 30 2010
a(n) = 3*a(n-1) - 2*a(n-2), n>1. - Vincenzo Librandi, Nov 03 2011
G.f.: (6-7*x) / ((1-x)*(1-2*x)). - Colin Barker, Sep 20 2016
E.g.f.: exp(x)*(1 + 5*exp(x)). - Stefano Spezia, Oct 08 2022
Product_{n>=0} (1 + 1/a(n)) = 7/5. - Amiram Eldar, Aug 04 2024
MATHEMATICA
NestList[2#-1&, 6, 40] (* Harvey P. Dale, Jun 23 2017 *)
PROG
(PARI) a(n)=5<<n+1 \\ M. F. Hasler, Oct 30 2010
(Magma) [5*2^n+1 : n in [0..30]]; // Vincenzo Librandi, Nov 03 2011
(PARI) Vec((6-7*x)/((1-x)*(1-2*x)) + O(x^40)) \\ Colin Barker, Sep 20 2016
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 15 2003
STATUS
approved