OFFSET
0,2
COMMENTS
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Feng-Zhen Zhao, The log-behavior of some sequences related to the generalized Leonardo numbers, Integers (2024) Vol. 24, Art. No. A82.
Index entries for linear recurrences with constant coefficients, signature (2, 0, -1).
FORMULA
G.f.: ( 1+4*x-x^2 ) / ( (x-1)*(x^2+x-1) ). The first differences are in A022088. - R. J. Mathar, May 04 2014
a(n) = 5*Fibonacci(n+2)-4. - Gerry Martens, Jul 04 2015
MATHEMATICA
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 4 n + 2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192750 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192751 *)
LinearRecurrence[{2, 0, -1}, {1, 6, 11}, 40] (* Harvey P. Dale, Dec 03 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 09 2011
EXTENSIONS
Entry revised by N. J. A. Sloane, Dec 15 2015
STATUS
approved