login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A265750 Prime factorization representation of polynomials defined recursively by p(0,x)=1 and for n>0: p(n,x) = x*p(n-1,x) + 4n+2. (See A192750). 6
2, 192, 3732480, 105815808000000, 15845956399848960000000000, 64521196676588557133336908800000000000000, 11596208520592232147315615803672416545196288000000000000000000, 254410805372253907145905144265082090216385314644252349615132618240000000000000000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..10

FORMULA

a(0) = 2; for n >= 1, a(n) = A003961(a(n-1)) * 2^((4*n)+2).

Other identities. For all n >= 1:

A192750(n) = A265752(a(n)).

A192751(n) = A265753(a(n)).

PROG

(PARI)

A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus

A265750(n) = if(0==n, 2, A003961(A265750(n-1)) * 2^((4*n)+2));

for(n=0, 10, write("b265750.txt", n, " ", A265750(n)));

(Scheme) (definec (A265750 n) (if (zero? n) 2 (* (A003961 (A265750 (- n 1))) (A000079 (+ 2 (* 4 n))))))

CROSSREFS

Cf. A003961, A192750, A192751, A206296, A265752, A265753.

Sequence in context: A230228 A197249 A151709 * A174827 A260404 A064682

Adjacent sequences:  A265747 A265748 A265749 * A265751 A265752 A265753

KEYWORD

nonn

AUTHOR

Antti Karttunen, Dec 15 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 6 11:51 EDT 2020. Contains 333273 sequences. (Running on oeis4.)